Skip to main content
Top
Published in: Molecular Brain 1/2018

Open Access 01-12-2018 | Research

Relationships between the acoustic startle response and prepulse inhibition in C57BL/6J mice: a large-scale meta-analytic study

Authors: Hirotaka Shoji, Tsuyoshi Miyakawa

Published in: Molecular Brain | Issue 1/2018

Login to get access

Abstract

Prepulse inhibition (PPI) is the suppression of a startle reflex response to a startle stimulus that occurs when a weak prepulse stimulus precedes the startle stimulus. PPI is measured to assess sensorimotor gating across species, including humans and rodents. Reduced PPI, which is thought to reflect dysfunction of sensorimotor gating, is reported in patients with psychiatric disorders, such as schizophrenia, bipolar disorder, and post-traumatic stress disorder (PTSD), and in animal models of these disorders. Individual differences in basal startle reactivity occur even in a genetically homogenous group of animals; however, there is limited information regarding whether basal levels of the startle response are associated with variations in PPI levels. Here, to explore the relationship between an acoustic startle response (ASR) and PPI, we performed a meta-analysis of data obtained from more than 1300 C57BL/6J male mice on the influence of an ASR to 110- and 120-dB startle stimuli on the PPI levels of the ASR at 74- and 78-dB prepulse intensities. Examination of scatter plots of the ASR amplitudes and PPI levels followed by correlation analyses indicated that there is no simple linear relationship between the two measures; when mice were divided into three groups on the basis of their startle amplitudes, there were positive correlations between the amplitude of the ASR to the 110-dB stimulus and PPI levels in a group of mice that showed lower ASR amplitudes among the genetically homogenous group, whereas no significant correlations were identified in groups of mice that showed intermediate and higher ASR amplitudes. As indicated by the correlation analysis, the lowest responders to the 110-dB stimulus exhibited lower levels of PPI than the intermediate or higher responders. In contrast, for the 120-dB stimulus, a negative correlation was identified between the amplitude of the ASR to the 120-dB stimulus and the PPI levels in the groups of mice that showed intermediate or higher ASR amplitudes. Lower and intermediate responders showed higher levels of PPI than higher responders to the 120-dB stimulus. These findings suggest that basal startle reactivity may affect PPI levels in male C57BL/6J mice, thus representing one potential confounding factor that may confuse the interpretation of PPI results. These findings emphasize the importance of careful examination of startle reactivity to ensure a reliable assessment of PPI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001;156:234–58.CrossRef Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001;156:234–58.CrossRef
2.
go back to reference Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology. 1978;15:339–43.CrossRefPubMed Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology. 1978;15:339–43.CrossRefPubMed
3.
go back to reference Braff DL, Geyer MA. Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry. 1990;47:181–8.CrossRefPubMed Braff DL, Geyer MA. Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry. 1990;47:181–8.CrossRefPubMed
4.
go back to reference McDowd JM, Filion DL, Harris MJ, Braff DL. Sensory gating and inhibitory function in late-life schizophrenia. Schizophr Bull. 1993;19:733–46.CrossRefPubMed McDowd JM, Filion DL, Harris MJ, Braff DL. Sensory gating and inhibitory function in late-life schizophrenia. Schizophr Bull. 1993;19:733–46.CrossRefPubMed
5.
go back to reference Ludewig K, Geyer MA, Vollenweider FX. Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry. 2003;54:121–8.CrossRefPubMed Ludewig K, Geyer MA, Vollenweider FX. Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry. 2003;54:121–8.CrossRefPubMed
6.
go back to reference Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology. 2008;199:331–88.CrossRefPubMedPubMedCentral Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology. 2008;199:331–88.CrossRefPubMedPubMedCentral
7.
go back to reference Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL. A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry. 1993;33:298–301.CrossRefPubMed Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL. A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry. 1993;33:298–301.CrossRefPubMed
8.
go back to reference Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR. Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease. J Neurol Neurosurg Psychiatry. 1995;58:192–200.CrossRefPubMedPubMedCentral Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR. Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease. J Neurol Neurosurg Psychiatry. 1995;58:192–200.CrossRefPubMedPubMedCentral
9.
go back to reference Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M. Sensorimotor gating in boys with Tourette's syndrome and ADHD: preliminary results. Biol Psychiatry. 1996;39:33–41.CrossRefPubMed Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M. Sensorimotor gating in boys with Tourette's syndrome and ADHD: preliminary results. Biol Psychiatry. 1996;39:33–41.CrossRefPubMed
10.
go back to reference Ludewig S, Geyer MA, Ramseier M, Vollenweider FX, Rechsteiner E, Cattapan-Ludewig K. Information-processing deficits and cognitive dysfunction in panic disorder. J Psychiatry Neurosci. 2005;30:37–43.PubMedPubMedCentral Ludewig S, Geyer MA, Ramseier M, Vollenweider FX, Rechsteiner E, Cattapan-Ludewig K. Information-processing deficits and cognitive dysfunction in panic disorder. J Psychiatry Neurosci. 2005;30:37–43.PubMedPubMedCentral
11.
go back to reference Grillon C, Morgan CA, Southwick SM, Davis M, Charney DS. Baseline startle amplitude and prepulse inhibition in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res. 1996;64:169–78.CrossRefPubMed Grillon C, Morgan CA, Southwick SM, Davis M, Charney DS. Baseline startle amplitude and prepulse inhibition in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res. 1996;64:169–78.CrossRefPubMed
12.
go back to reference Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology. 2001;156:194–215.CrossRefPubMed Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology. 2001;156:194–215.CrossRefPubMed
14.
go back to reference Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology. 1997;132:107–24.CrossRefPubMed Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology. 1997;132:107–24.CrossRefPubMed
15.
go back to reference Willott JF, Tanner L, O'steen J, Johnson KR, Bogue MA, Gagnon L. Acoustic startle and prepulse inhibition in 40 inbred strains of mice. Behav Neurosci. 2003;117:716–27.CrossRefPubMed Willott JF, Tanner L, O'steen J, Johnson KR, Bogue MA, Gagnon L. Acoustic startle and prepulse inhibition in 40 inbred strains of mice. Behav Neurosci. 2003;117:716–27.CrossRefPubMed
16.
go back to reference Ouagazzal AM, Reiss D, Romand R. Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background. Behav Brain Res. 2006;172:307–15.CrossRefPubMed Ouagazzal AM, Reiss D, Romand R. Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background. Behav Brain Res. 2006;172:307–15.CrossRefPubMed
17.
18.
go back to reference Ison JR, Allen PD. Pre-but not post-menopausal female CBA/CaJ mice show less prepulse inhibition than male mice of the same age. Behav Brain Res. 2007;185:76–81.CrossRefPubMed Ison JR, Allen PD. Pre-but not post-menopausal female CBA/CaJ mice show less prepulse inhibition than male mice of the same age. Behav Brain Res. 2007;185:76–81.CrossRefPubMed
19.
go back to reference Willott JF. Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice. Hearing Res. 2009;252:89–99.CrossRef Willott JF. Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice. Hearing Res. 2009;252:89–99.CrossRef
20.
go back to reference Tucci V, Lad HV, Parker A, Polley S, Brown SD, Nolan PM. Gene-environment interactions differentially affect mouse strain behavioral parameters. Mamm Genome. 2006;1:1113–20.CrossRef Tucci V, Lad HV, Parker A, Polley S, Brown SD, Nolan PM. Gene-environment interactions differentially affect mouse strain behavioral parameters. Mamm Genome. 2006;1:1113–20.CrossRef
21.
go back to reference Varty GB, Powell SB, Lehmann-Masten V, Buell MR, Geyer MA. Isolation rearing of mice induces deficits in prepulse inhibition of the startle response. Behav Brain Res. 2006;169:162–7.CrossRefPubMed Varty GB, Powell SB, Lehmann-Masten V, Buell MR, Geyer MA. Isolation rearing of mice induces deficits in prepulse inhibition of the startle response. Behav Brain Res. 2006;169:162–7.CrossRefPubMed
22.
go back to reference Ison JR, Bowen GP, Pak J, Gutierrez E. Changes in the strength of prepulse inhibition with variation in the startle baseline associated with individual differences and with old age in rats and mice. Psychobiology. 1997;25:266–74. Ison JR, Bowen GP, Pak J, Gutierrez E. Changes in the strength of prepulse inhibition with variation in the startle baseline associated with individual differences and with old age in rats and mice. Psychobiology. 1997;25:266–74.
23.
go back to reference Yee BK, Chang T, Pietropaolo S, Feldon J. The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res. 2005;163:265–76.CrossRefPubMed Yee BK, Chang T, Pietropaolo S, Feldon J. The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res. 2005;163:265–76.CrossRefPubMed
24.
go back to reference Takao K, Yamasaki N, Miyakawa T. Impact of brain-behavior phenotypying of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res. 2007;58:124–32.CrossRefPubMed Takao K, Yamasaki N, Miyakawa T. Impact of brain-behavior phenotypying of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res. 2007;58:124–32.CrossRefPubMed
25.
go back to reference Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T. Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci. 2010;4:29.PubMedPubMedCentral Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T. Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci. 2010;4:29.PubMedPubMedCentral
26.
go back to reference Willott JF, Carlson S, Chen H. Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behav Neurosci. 1994;108:703–13.CrossRefPubMed Willott JF, Carlson S, Chen H. Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behav Neurosci. 1994;108:703–13.CrossRefPubMed
27.
go back to reference Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, et al. Comprehensive behavioural study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav. 2010;9:899–909.CrossRefPubMed Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, et al. Comprehensive behavioural study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav. 2010;9:899–909.CrossRefPubMed
29.
go back to reference Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, et al. Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain. 2014;7:21.CrossRefPubMedPubMedCentral Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, et al. Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain. 2014;7:21.CrossRefPubMedPubMedCentral
Metadata
Title
Relationships between the acoustic startle response and prepulse inhibition in C57BL/6J mice: a large-scale meta-analytic study
Authors
Hirotaka Shoji
Tsuyoshi Miyakawa
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2018
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-018-0382-7

Other articles of this Issue 1/2018

Molecular Brain 1/2018 Go to the issue