Skip to main content
Top
Published in: Molecular Brain 1/2017

Open Access 01-12-2017 | Research

Genomic copy number variation analysis in multiple system atrophy

Authors: Yuka Hama, Masataka Katsu, Ichigaku Takigawa, Ichiro Yabe, Masaaki Matsushima, Ikuko Takahashi, Takayuki Katayama, Jun Utsumi, Hidenao Sasaki

Published in: Molecular Brain | Issue 1/2017

Login to get access

Abstract

Genomic variation includes single-nucleotide variants, small insertions or deletions (indels), and copy number variants (CNVs). CNVs affect gene expression by altering the genome structure and transposable elements within a region. CNVs are greater than 1 kb in size; hence, CNVs can produce more variation than can individual single-nucleotide variations that are detected by next-generation sequencing. Multiple system atrophy (MSA) is an α-synucleinopathy adult-onset disorder. Pathologically, it is characterized by insoluble aggregation of filamentous α-synuclein in brain oligodendrocytes. Generally, MSA is sporadic, although there are rare cases of familial MSA. In addition, the frequencies of the clinical phenotypes differ considerably among countries. Reports indicate that genetic factors play roles in the mechanisms involved in the pathology and onset of MSA. To evaluate the genetic background of this disorder, we attempted to determine whether there are differences in CNVs between patients with MSA and normal control subjects. We found that the number of CNVs on chromosomes 5, 22, and 4 was increased in MSA; 3 CNVs in non-coding regions were considered risk factors for MSA. Our results show that CNVs in non-coding regions influence the expression of genes through transcription-related mechanisms and potentially increase subsequent structural alterations of chromosomes. Therefore, these CNVs likely play roles in the molecular mechanisms underlying MSA.
Appendix
Available only for authorised users
Literature
6.
28.
go back to reference Sasaki H, Emi M, Iijima H, Ito N, Sato H, Yabe I, et al. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain. 2011;4 doi:10.1186/1756-6606-4-24. Sasaki H, Emi M, Iijima H, Ito N, Sato H, Yabe I, et al. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain. 2011;4 doi:10.​1186/​1756-6606-4-24.
33.
go back to reference Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 2006;38:1038–42. doi:10.1038/ng1862.CrossRefPubMed Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 2006;38:1038–42. doi:10.​1038/​ng1862.CrossRefPubMed
35.
go back to reference The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237–241; doi:10.1038/nature07239. The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237–241; doi:10.​1038/​nature07239.
37.
Metadata
Title
Genomic copy number variation analysis in multiple system atrophy
Authors
Yuka Hama
Masataka Katsu
Ichigaku Takigawa
Ichiro Yabe
Masaaki Matsushima
Ikuko Takahashi
Takayuki Katayama
Jun Utsumi
Hidenao Sasaki
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2017
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-017-0335-6

Other articles of this Issue 1/2017

Molecular Brain 1/2017 Go to the issue