Skip to main content
Top
Published in: Molecular Brain 1/2014

Open Access 01-12-2014 | Research

CNS axon regeneration inhibitors stimulate an immediate early gene response via MAP kinase-SRF signaling

Authors: Sina Stern, Bernd Knöll

Published in: Molecular Brain | Issue 1/2014

Login to get access

Abstract

Background

CNS axon regeneration inhibitors such as Nogo and CSPGs (Chondroitin Sulfate Proteoglycans) are major extrinsic factors limiting outgrowth of severed nerve fibers. However, knowledge on intracellular signaling cascades and gene expression programs activated by these inhibitors in neurons is sparse. Herein we studied intracellular signaling cascades activated by total myelin, Nogo and CSPGs in primary mouse CNS neurons.

Results

Total myelin, Nogo and CSPGs stimulated gene expression activity of the serum response factor (SRF), a central gene regulator of immediate early (IEG) and actin cytoskeletal gene transcription. As demonstrated by pharmacological interference, SRF-mediated IEG activation by myelin, Nogo or CSPGs depended on MAP kinase, to a lesser extent on Rho-GTPase but not on PKA signaling. Stimulation of neurons with all three axon growth inhibitors activated the MAP kinase ERK. In addition to ERK activation, myelin activated the IEG c-Fos, an important checkpoint of neuronal survival vs. apoptosis. Employing Srf deficient neurons revealed that myelin-induced IEG activation requires SRF. This suggests an SRF function in mediating neuronal signaling evoked by axon regeneration associated inhibitors. Besides being a signaling target of axon growth inhibitors, we show that constitutively-active SRF-VP16 can be employed to circumvent neurite growth inhibition imposed by myelin, Nogo and CSPGs.

Conclusion

In sum, our data demonstrate that axon regeneration inhibitors such as Nogo trigger gene expression programs including an SRF-dependent IEG response via MAP kinases and Rho-GTPases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Filbin MT: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003, 4: 703-713. 10.1038/nrn1195.PubMedCrossRef Filbin MT: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003, 4: 703-713. 10.1038/nrn1195.PubMedCrossRef
2.
go back to reference Akbik F, Cafferty WB, Strittmatter SM: Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol. 2012, 235: 43-52. 10.1016/j.expneurol.2011.06.006.PubMedPubMedCentralCrossRef Akbik F, Cafferty WB, Strittmatter SM: Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol. 2012, 235: 43-52. 10.1016/j.expneurol.2011.06.006.PubMedPubMedCentralCrossRef
3.
go back to reference Liu K, Tedeschi A, Park KK, He Z: Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci. 2011, 34: 131-152. 10.1146/annurev-neuro-061010-113723.PubMedCrossRef Liu K, Tedeschi A, Park KK, He Z: Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci. 2011, 34: 131-152. 10.1146/annurev-neuro-061010-113723.PubMedCrossRef
4.
go back to reference Hsieh SH, Ferraro GB, Fournier AE: Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci. 2006, 26: 1006-1015. 10.1523/JNEUROSCI.2806-05.2006.PubMedCrossRef Hsieh SH, Ferraro GB, Fournier AE: Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci. 2006, 26: 1006-1015. 10.1523/JNEUROSCI.2806-05.2006.PubMedCrossRef
5.
go back to reference Hannila SS, Filbin MT: The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol. 2008, 209: 321-332. 10.1016/j.expneurol.2007.06.020.PubMedPubMedCentralCrossRef Hannila SS, Filbin MT: The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol. 2008, 209: 321-332. 10.1016/j.expneurol.2007.06.020.PubMedPubMedCentralCrossRef
6.
go back to reference Barnat M, Enslen H, Propst F, Davis RJ, Soares S, Nothias F: Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci. 2010, 30: 7804-7816. 10.1523/JNEUROSCI.0372-10.2010.PubMedCrossRef Barnat M, Enslen H, Propst F, Davis RJ, Soares S, Nothias F: Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci. 2010, 30: 7804-7816. 10.1523/JNEUROSCI.0372-10.2010.PubMedCrossRef
7.
go back to reference Nix P, Hisamoto N, Matsumoto K, Bastiani M: Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc Natl Acad Sci U S A. 2011, 108: 10738-10743. 10.1073/pnas.1104830108.PubMedPubMedCentralCrossRef Nix P, Hisamoto N, Matsumoto K, Bastiani M: Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc Natl Acad Sci U S A. 2011, 108: 10738-10743. 10.1073/pnas.1104830108.PubMedPubMedCentralCrossRef
8.
go back to reference Tonges L, Planchamp V, Koch JC, Herdegen T, Bahr M, Lingor P: JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J Mol Neurosci. 2011, 45: 284-293. 10.1007/s12031-011-9519-1.PubMedPubMedCentralCrossRef Tonges L, Planchamp V, Koch JC, Herdegen T, Bahr M, Lingor P: JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J Mol Neurosci. 2011, 45: 284-293. 10.1007/s12031-011-9519-1.PubMedPubMedCentralCrossRef
9.
go back to reference Agthong S, Koonam J, Kaewsema A, Chentanez V: Inhibition of MAPK ERK impairs axonal regeneration without an effect on neuronal loss after nerve injury. Neurol Res. 2009, 31: 1068-1074. 10.1179/174313209X380883.PubMedCrossRef Agthong S, Koonam J, Kaewsema A, Chentanez V: Inhibition of MAPK ERK impairs axonal regeneration without an effect on neuronal loss after nerve injury. Neurol Res. 2009, 31: 1068-1074. 10.1179/174313209X380883.PubMedCrossRef
10.
go back to reference Liu RY, Snider WD: Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci. 2001, 21: RC164-PubMed Liu RY, Snider WD: Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci. 2001, 21: RC164-PubMed
11.
go back to reference Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, Collins MJ, Harrisingh MC, White IJ, Woodhoo A, Lloyd AC: A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron. 2012, 73: 729-742. 10.1016/j.neuron.2011.11.031.PubMedCrossRef Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, Collins MJ, Harrisingh MC, White IJ, Woodhoo A, Lloyd AC: A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron. 2012, 73: 729-742. 10.1016/j.neuron.2011.11.031.PubMedCrossRef
12.
go back to reference Hollis ER, Jamshidi P, Low K, Blesch A, Tuszynski MH: Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A. 2009, 106: 7215-7220. 10.1073/pnas.0810624106.PubMedPubMedCentralCrossRef Hollis ER, Jamshidi P, Low K, Blesch A, Tuszynski MH: Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A. 2009, 106: 7215-7220. 10.1073/pnas.0810624106.PubMedPubMedCentralCrossRef
13.
go back to reference Kaneko M, Kubo T, Hata K, Yamaguchi A, Yamashita T: Repulsion of cerebellar granule neurons by chondroitin sulfate proteoglycans is mediated by MAPK pathway. Neurosci Lett. 2007, 423: 62-67. 10.1016/j.neulet.2007.06.038.PubMedCrossRef Kaneko M, Kubo T, Hata K, Yamaguchi A, Yamashita T: Repulsion of cerebellar granule neurons by chondroitin sulfate proteoglycans is mediated by MAPK pathway. Neurosci Lett. 2007, 423: 62-67. 10.1016/j.neulet.2007.06.038.PubMedCrossRef
14.
go back to reference Miura T, Tanaka S, Seichi A, Arai M, Goto T, Katagiri H, Asano T, Oda H, Nakamura K: Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp Neurol. 2000, 166: 115-126. 10.1006/exnr.2000.7493.PubMedCrossRef Miura T, Tanaka S, Seichi A, Arai M, Goto T, Katagiri H, Asano T, Oda H, Nakamura K: Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp Neurol. 2000, 166: 115-126. 10.1006/exnr.2000.7493.PubMedCrossRef
15.
go back to reference Knoll B, Nordheim A: Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci. 2009, 32: 432-442. 10.1016/j.tins.2009.05.004.PubMedCrossRef Knoll B, Nordheim A: Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci. 2009, 32: 432-442. 10.1016/j.tins.2009.05.004.PubMedCrossRef
16.
go back to reference Curran T, Morgan JI: Fos: an immediate-early transcription factor in neurons. J Neurobiol. 1995, 26: 403-412. 10.1002/neu.480260312.PubMedCrossRef Curran T, Morgan JI: Fos: an immediate-early transcription factor in neurons. J Neurobiol. 1995, 26: 403-412. 10.1002/neu.480260312.PubMedCrossRef
17.
go back to reference Olson EN, Nordheim A: Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol. 2010, 11: 353-365. 10.1038/nrm2890.PubMedPubMedCentralCrossRef Olson EN, Nordheim A: Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol. 2010, 11: 353-365. 10.1038/nrm2890.PubMedPubMedCentralCrossRef
18.
go back to reference Stern S, Sinske D, Knoll B: Serum Response Factor modulates neuron survival during peripheral axon injury. J Neuroinflammation. 2012, 9: 78-10.1186/1742-2094-9-78.PubMedPubMedCentralCrossRef Stern S, Sinske D, Knoll B: Serum Response Factor modulates neuron survival during peripheral axon injury. J Neuroinflammation. 2012, 9: 78-10.1186/1742-2094-9-78.PubMedPubMedCentralCrossRef
19.
go back to reference Stern S, Haverkamp S, Sinske D, Tedeschi A, Naumann U, Di Giovanni S, Kochanek S, Nordheim A, Knoll B: The transcription factor Serum Response Factor stimulates axon regeneration through cytoplasmic localization and cofilin interaction. J Neurosci. 2013, 33: 18836-18848. 10.1523/JNEUROSCI.3029-13.2013.PubMedCrossRef Stern S, Haverkamp S, Sinske D, Tedeschi A, Naumann U, Di Giovanni S, Kochanek S, Nordheim A, Knoll B: The transcription factor Serum Response Factor stimulates axon regeneration through cytoplasmic localization and cofilin interaction. J Neurosci. 2013, 33: 18836-18848. 10.1523/JNEUROSCI.3029-13.2013.PubMedCrossRef
20.
go back to reference Kalita K, Kharebava G, Zheng JJ, Hetman M: Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity. J Neurosci. 2006, 26: 10020-10032. 10.1523/JNEUROSCI.2644-06.2006.PubMedCrossRef Kalita K, Kharebava G, Zheng JJ, Hetman M: Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity. J Neurosci. 2006, 26: 10020-10032. 10.1523/JNEUROSCI.2644-06.2006.PubMedCrossRef
21.
go back to reference Stritt C, Knoll B: Serum Response Factor regulates hippocampal lamination and dendrite development and is connected with reelin signaling. Mol Cell Biol. 2012, 30: 1828-1837. 10.1128/MCB.01434-09.CrossRef Stritt C, Knoll B: Serum Response Factor regulates hippocampal lamination and dendrite development and is connected with reelin signaling. Mol Cell Biol. 2012, 30: 1828-1837. 10.1128/MCB.01434-09.CrossRef
22.
go back to reference Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A: Serum Response Factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci. 2006, 9: 195-204. 10.1038/nn1627.PubMedCrossRef Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A: Serum Response Factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci. 2006, 9: 195-204. 10.1038/nn1627.PubMedCrossRef
23.
go back to reference Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A: Serum Response Factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol. 2002, 156: 737-750. 10.1083/jcb.200106008.PubMedPubMedCentralCrossRef Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A: Serum Response Factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol. 2002, 156: 737-750. 10.1083/jcb.200106008.PubMedPubMedCentralCrossRef
24.
go back to reference Oertle T, van der Haar ME, Bandtlow CE, Robeva A, Burfeind P, Buss A, Huber AB, Simonen M, Schnell L, Brösamle C, Kaupmann K, Vallon R, Schwab ME: Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci. 2003, 23: 5393-5406.PubMed Oertle T, van der Haar ME, Bandtlow CE, Robeva A, Burfeind P, Buss A, Huber AB, Simonen M, Schnell L, Brösamle C, Kaupmann K, Vallon R, Schwab ME: Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci. 2003, 23: 5393-5406.PubMed
25.
go back to reference Lu PP, Ramanan N: Serum Response Factor is required for cortical axon growth but is dispensable for neurogenesis and neocortical lamination. J Neurosci. 2011, 31: 16651-16664. 10.1523/JNEUROSCI.3015-11.2011.PubMedCrossRef Lu PP, Ramanan N: Serum Response Factor is required for cortical axon growth but is dispensable for neurogenesis and neocortical lamination. J Neurosci. 2011, 31: 16651-16664. 10.1523/JNEUROSCI.3015-11.2011.PubMedCrossRef
26.
go back to reference Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K, Ginty DD: Serum Response Factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron. 2008, 58: 532-545. 10.1016/j.neuron.2008.03.006.PubMedPubMedCentralCrossRef Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K, Ginty DD: Serum Response Factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron. 2008, 58: 532-545. 10.1016/j.neuron.2008.03.006.PubMedPubMedCentralCrossRef
28.
go back to reference Meier C, Anastasiadou S, Knoll B: Ephrin-A5 suppresses neurotrophin evoked neuronal motility, ERK activation and gene expression. PLoS One. 2011, 6: e26089-10.1371/journal.pone.0026089.PubMedPubMedCentralCrossRef Meier C, Anastasiadou S, Knoll B: Ephrin-A5 suppresses neurotrophin evoked neuronal motility, ERK activation and gene expression. PLoS One. 2011, 6: e26089-10.1371/journal.pone.0026089.PubMedPubMedCentralCrossRef
29.
go back to reference Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S: Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010, 70: 271-288.PubMedPubMedCentral Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S: Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010, 70: 271-288.PubMedPubMedCentral
30.
go back to reference Hill CS, Wynne J, Treisman R: The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995, 81: 1159-1170. 10.1016/S0092-8674(05)80020-0.PubMedCrossRef Hill CS, Wynne J, Treisman R: The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995, 81: 1159-1170. 10.1016/S0092-8674(05)80020-0.PubMedCrossRef
31.
go back to reference Lapointe NP, Ung RV, Guertin PA: Plasticity in sublesionally located neurons following spinal cord injury. J Neurophysiol. 2007, 98: 2497-2500. 10.1152/jn.00621.2007.PubMedCrossRef Lapointe NP, Ung RV, Guertin PA: Plasticity in sublesionally located neurons following spinal cord injury. J Neurophysiol. 2007, 98: 2497-2500. 10.1152/jn.00621.2007.PubMedCrossRef
32.
go back to reference Beck H, Flynn K, Lindenberg KS, Schwarz H, Bradke F, Di Giovanni S, Knoll B: Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. Proc Natl Acad Sci U S A. 2012, 109: E2523-E2532. 10.1073/pnas.1208141109.PubMedPubMedCentralCrossRef Beck H, Flynn K, Lindenberg KS, Schwarz H, Bradke F, Di Giovanni S, Knoll B: Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. Proc Natl Acad Sci U S A. 2012, 109: E2523-E2532. 10.1073/pnas.1208141109.PubMedPubMedCentralCrossRef
33.
go back to reference Stern S, Debre E, Stritt C, Berger J, Posern G, Knoll B: A nuclear actin function regulates neuronal motility by serum response factor-dependent gene transcription. J Neurosci. 2009, 29: 4512-4518. 10.1523/JNEUROSCI.0333-09.2009.PubMedCrossRef Stern S, Debre E, Stritt C, Berger J, Posern G, Knoll B: A nuclear actin function regulates neuronal motility by serum response factor-dependent gene transcription. J Neurosci. 2009, 29: 4512-4518. 10.1523/JNEUROSCI.0333-09.2009.PubMedCrossRef
34.
go back to reference Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A, Knoll B: Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci. 2009, 12: 418-427. 10.1038/nn.2280.PubMedCrossRef Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A, Knoll B: Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci. 2009, 12: 418-427. 10.1038/nn.2280.PubMedCrossRef
35.
go back to reference Norton WT, Poduslo SE: Myelination in rat brain: method of myelin isolation. J Neurochem. 1973, 21: 749-757. 10.1111/j.1471-4159.1973.tb07519.x.PubMedCrossRef Norton WT, Poduslo SE: Myelination in rat brain: method of myelin isolation. J Neurochem. 1973, 21: 749-757. 10.1111/j.1471-4159.1973.tb07519.x.PubMedCrossRef
Metadata
Title
CNS axon regeneration inhibitors stimulate an immediate early gene response via MAP kinase-SRF signaling
Authors
Sina Stern
Bernd Knöll
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2014
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-014-0086-6

Other articles of this Issue 1/2014

Molecular Brain 1/2014 Go to the issue