Skip to main content
Top
Published in: Infectious Agents and Cancer 1/2018

Open Access 01-12-2018 | Research Article

HPV genotype distribution among women with normal and abnormal cervical cytology presenting in a tertiary gynecology referral Clinic in Ethiopia

Authors: Dawit Wolday, Muluken Derese, Solomon Gebressellassie, Bekure Tsegaye, Wondwossen Ergete, Yirgu Gebrehiwot, Orit Caplan, Dana G. Wolf, Shlomo Maayan

Published in: Infectious Agents and Cancer | Issue 1/2018

Login to get access

Abstract

Background

Cervical cancer is the second most prevalent cancer among women of child-bearing age in Ethiopia. The aim of this study was to determine human papilloma virus (HPV) genotype distribution among HIV-negative women with normal and abnormal cervical cytology results.

Methods

We investigated a consecutive of 233 HIV-negative women between December 2008 and March 2009 presenting in a Tertiary Gynecology Referral Clinic in Ethiopia. Screening was done by Pap cytology and HPV detection and genotyping method was nested PCR (direct amplification with MY09/MY11 primers, followed by nested amplification with GP5/GP6 primers) and sequencing of the nested products. Sequencing of the non-purified nested PCR products was performed following re-amplification with Big dye terminator, using the GP6 primer.

Results

Of the 233 study participants, 92 (39.5%) had abnormal cytology. All women with abnormal cervical cytology had positive HPV DNA compared to only 48.9% of those presenting with normal cytology. Of these women, the frequency of high-risk (HR)-HPV was 83.2% and its prevalence in women with abnormal cervical cytology was significantly higher than those with normal cytology (92.4% vs. 71%, p < 0.0001). The most frequent genotypes identified were HPV16 (44.1%), followed by HPV35 and HPV45 (each 6.2%), HPV31 (4.4%), HPV56 (3.7%), HPV18 and HPV59 (each 3.1%), HPV58 (2.5%) and HPV39 (1.9%). While the most common HR-HPV infections among women with normal cytology were HPV16 (20.3%), followed by HPV35 (8.7%), HPV56 and HPV58 (each 5.8%), HPV18, HPV31 and HPV39 (each 4.4%), HPV45 (2.9%) and HPV59 and HPV68 (each 1.5%), the most common HR-HPV infections in women with abnormal cytology included HPV16 (62%), followed by HPV45 (8.7%), HPV 31, HPV35 and HPV59 (each 4.4%), and HPV18, HPV52 and HPV56 (each 2.2%). We also noted low prevalence of multiple HPV infections in women with normal or abnormal cytology. Multivariable logistic analysis showed that residing in rural area (OR 3.24, 95% CI: 1.13–9.30), being multipara (OR 7.35, 95% CI: 1.78–30.38) and having abnormal cervical cytology results (OR 6.75, 95% CI: 1.78–25.57) were all independently associated with HPV16 genotype.

Conclusions

Our study revealed a significant risk of infection with HR-HPV, in particular with HPV16 genotype, in women attending a referral center in Ethiopian women presenting with or without abnormal cervical cytology. Moreover, Pap smear cytology missed a significant proportion of women compared to those who were identified by PCR for HR-HPV infections. In addition, the PCR method we used was not suitable for sensitive detection of co-existent multiple infections. Data from the present study indicate that currently available HPV vaccines could prevent nearly 67% of all cervical cancer cases in women in Ethiopia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bruni L, Barrionuevo-Rosas L, Serrano B, Brotons M, Cosano R, Munoz J, Bosch F, de Sanjose S, Castellsague X. Human Papillomavirus and Related Diseases in World. Summary Report, 2014. ICO Information Centre on HPV and Cancer (HPV Information Centre). Available at: www.hpvcentre.net. Accessed 29 June 2016. Bruni L, Barrionuevo-Rosas L, Serrano B, Brotons M, Cosano R, Munoz J, Bosch F, de Sanjose S, Castellsague X. Human Papillomavirus and Related Diseases in World. Summary Report, 2014. ICO Information Centre on HPV and Cancer (HPV Information Centre). Available at: www.​hpvcentre.​net. Accessed 29 June 2016.
2.
go back to reference Bruni L, Barrionuevo-Rosas L, Albero G, Aldea M, Serrano B, Valencia S, Brotons M, Mena M, Cosano R, Muñoz J, Bosch FX, de Sanjosé S, Castellsagué X. ICO information Centre on HPV and Cancer (HPV information Centre). Human Papillomavirus and Related Diseases in Ethiopia. Summary Report 2016. Available at: www.hpvcentre.net. Accessed 30 June 2016. Bruni L, Barrionuevo-Rosas L, Albero G, Aldea M, Serrano B, Valencia S, Brotons M, Mena M, Cosano R, Muñoz J, Bosch FX, de Sanjosé S, Castellsagué X. ICO information Centre on HPV and Cancer (HPV information Centre). Human Papillomavirus and Related Diseases in Ethiopia. Summary Report 2016. Available at: www.​hpvcentre.​net. Accessed 30 June 2016.
4.
go back to reference Fanta BE. The distribution of human papilloma virus infection in women with cervical histological abnormalities from an area with high incidence of cervical cancer. Ethiop Med J. 2005;43:151–8.PubMed Fanta BE. The distribution of human papilloma virus infection in women with cervical histological abnormalities from an area with high incidence of cervical cancer. Ethiop Med J. 2005;43:151–8.PubMed
5.
go back to reference Ruland R, Prugger C, Schiffer R, Regidor M, Lelle RJ. Prevalence of human papilloma virus infection in women in rural Ethiopia. Eur J Epidemiol. 2006;21:727–9.CrossRefPubMed Ruland R, Prugger C, Schiffer R, Regidor M, Lelle RJ. Prevalence of human papilloma virus infection in women in rural Ethiopia. Eur J Epidemiol. 2006;21:727–9.CrossRefPubMed
6.
go back to reference Bekele A, Baay M, Mekonnen Z, Suleman S, Chatterjee S. Human papillomavirus type distribution among women with cervical pathology - a study over 4 years at Jimma Hospital, southwest Ethiopia. Tropical Med Int Health. 2010;15:890–3.CrossRef Bekele A, Baay M, Mekonnen Z, Suleman S, Chatterjee S. Human papillomavirus type distribution among women with cervical pathology - a study over 4 years at Jimma Hospital, southwest Ethiopia. Tropical Med Int Health. 2010;15:890–3.CrossRef
7.
go back to reference Abate E, Aseffa A, El-Tayeb M, El-Hassan I, Yamuah L, Mihret W, Bekele L, Ashenafi S, El-Dawi N, Belayneh M, El-Hassan A, Engers H. Genotype of human papillomavirus in paraffin embedded cervical tissue sample from women in Ethiopia and the Sudan. J Med Virol. 2013;85:282–7.CrossRefPubMed Abate E, Aseffa A, El-Tayeb M, El-Hassan I, Yamuah L, Mihret W, Bekele L, Ashenafi S, El-Dawi N, Belayneh M, El-Hassan A, Engers H. Genotype of human papillomavirus in paraffin embedded cervical tissue sample from women in Ethiopia and the Sudan. J Med Virol. 2013;85:282–7.CrossRefPubMed
8.
go back to reference Leyh-Bannurah SR, Prugger C, de Koning MN, Goette H, Lellé RJ. Cervical human papillomavirus prevalence and genotype distribution among hybrid capture 2 positive women 15 to 64 years of age in the Gurage zone, rural Ethiopia. Infect Agent Cancer. 2014;9:33–41.CrossRefPubMedPubMedCentral Leyh-Bannurah SR, Prugger C, de Koning MN, Goette H, Lellé RJ. Cervical human papillomavirus prevalence and genotype distribution among hybrid capture 2 positive women 15 to 64 years of age in the Gurage zone, rural Ethiopia. Infect Agent Cancer. 2014;9:33–41.CrossRefPubMedPubMedCentral
9.
go back to reference Mihret W, Yusuf L, Abebe M, Yamuah LK, Bekele L, Abate E, Wassie L, Engers H, Aseffa A. A pilot study on detection and genotyping of human papillomavirus isolated from clinically diagnosed Ethiopian women having cervical intraepithelial neoplasia. Ethiop Med J. 2014;(Suppl. 1): 49-52. Mihret W, Yusuf L, Abebe M, Yamuah LK, Bekele L, Abate E, Wassie L, Engers H, Aseffa A. A pilot study on detection and genotyping of human papillomavirus isolated from clinically diagnosed Ethiopian women having cervical intraepithelial neoplasia. Ethiop Med J. 2014;(Suppl. 1): 49-52.
10.
11.
go back to reference Husnjak K, Grce M, Magdić L, Pavelić K. Comparison of five different polymerase chain reaction methods for detection of human papillomavirus in cervical cell specimens. J Virol Methods. 2000;88:125–34.CrossRefPubMed Husnjak K, Grce M, Magdić L, Pavelić K. Comparison of five different polymerase chain reaction methods for detection of human papillomavirus in cervical cell specimens. J Virol Methods. 2000;88:125–34.CrossRefPubMed
12.
go back to reference Bouvard V, Baan R, Straif K, et al. WHO international agency for research on Cancer monograph working group. A review of human carcinogens—part B: biological agents. Lancet Oncol. 2009;10:321–2.CrossRefPubMed Bouvard V, Baan R, Straif K, et al. WHO international agency for research on Cancer monograph working group. A review of human carcinogens—part B: biological agents. Lancet Oncol. 2009;10:321–2.CrossRefPubMed
13.
go back to reference Gedefaw A, Astatkie A, Tessema GA. The prevalence of precancerous cervical cancer lesion among HIV-infected women in southern Ethiopia: a cross-sectional study. PLoS One. 2013;8:e84519.CrossRefPubMedPubMedCentral Gedefaw A, Astatkie A, Tessema GA. The prevalence of precancerous cervical cancer lesion among HIV-infected women in southern Ethiopia: a cross-sectional study. PLoS One. 2013;8:e84519.CrossRefPubMedPubMedCentral
14.
go back to reference Boumba LM, Qmichou Z, Mouallif M, et al. HPV genotypes distribution by cytological status among women attending the general Hospital of Loandjili, Pointe-Noire, Southwest Congo (Brazzaville). J Med Virol. 2015;87:1769–76.CrossRefPubMed Boumba LM, Qmichou Z, Mouallif M, et al. HPV genotypes distribution by cytological status among women attending the general Hospital of Loandjili, Pointe-Noire, Southwest Congo (Brazzaville). J Med Virol. 2015;87:1769–76.CrossRefPubMed
15.
go back to reference Ogembo RK, Gona PN, Seymour AJ, Park HS-M, Bain PA, Maranda L, et al. Prevalence of HPV genotypes among African women with normal cervical cytology and neoplasia: a systematic review and meta-analysis. PLoS One. 2015;10:e0122488.CrossRefPubMedPubMedCentral Ogembo RK, Gona PN, Seymour AJ, Park HS-M, Bain PA, Maranda L, et al. Prevalence of HPV genotypes among African women with normal cervical cytology and neoplasia: a systematic review and meta-analysis. PLoS One. 2015;10:e0122488.CrossRefPubMedPubMedCentral
16.
go back to reference Zoa-Assoumou S, Ndjoyi-Mbiguino A, Mabika BM, et al. Human papillomavirus genotypes distribution in cervical cancer cases in Gabon. Infect Agents cancer. 2016;11:42–7.CrossRefPubMedPubMedCentral Zoa-Assoumou S, Ndjoyi-Mbiguino A, Mabika BM, et al. Human papillomavirus genotypes distribution in cervical cancer cases in Gabon. Infect Agents cancer. 2016;11:42–7.CrossRefPubMedPubMedCentral
17.
go back to reference Mayrand MH, Duarte-Franco E, Rodrigues I, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357:1579–88.CrossRefPubMed Mayrand MH, Duarte-Franco E, Rodrigues I, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357:1579–88.CrossRefPubMed
18.
go back to reference Cuzick J, Clavel C, Petry KU, Meijer CJ, Hoyer H, Ratnam S, et al. Overview of the European and north American studies on HPV testing in primary cervical cancer screening. Int J Cancer. 2006;119:1095–101.CrossRefPubMed Cuzick J, Clavel C, Petry KU, Meijer CJ, Hoyer H, Ratnam S, et al. Overview of the European and north American studies on HPV testing in primary cervical cancer screening. Int J Cancer. 2006;119:1095–101.CrossRefPubMed
19.
go back to reference Fernandes JV, Meissner Rde V, de Carvalho MG, Fernandes TA, de Azevedo PR, Villa LL. Prevalence of HPV infection by cervical cytologic status in Brazil. Int J Gynaecol Obstet. 2009;105:21–4.CrossRefPubMed Fernandes JV, Meissner Rde V, de Carvalho MG, Fernandes TA, de Azevedo PR, Villa LL. Prevalence of HPV infection by cervical cytologic status in Brazil. Int J Gynaecol Obstet. 2009;105:21–4.CrossRefPubMed
20.
go back to reference Lazcano-Ponce E, Herrero R, Munoz N, Cruz A, Shah KV, Alonso P, Hernandez P, Salmeron J, Hernandez M. Epidemiology of HPV infection among Mexican women with normal cervical cytology. Int J Cancer. 2001;91:412–20.CrossRefPubMed Lazcano-Ponce E, Herrero R, Munoz N, Cruz A, Shah KV, Alonso P, Hernandez P, Salmeron J, Hernandez M. Epidemiology of HPV infection among Mexican women with normal cervical cytology. Int J Cancer. 2001;91:412–20.CrossRefPubMed
21.
go back to reference Menon SS, Rossi R, Harebottle R, Mabeya H, Broeck D. Distribution of human papillomaviruses and bacterial vaginosis in HIV positive women with abnormal cytology in Mombasa. Kenya Infectious Agents and Cancer. 2016;11:17–25.CrossRefPubMed Menon SS, Rossi R, Harebottle R, Mabeya H, Broeck D. Distribution of human papillomaviruses and bacterial vaginosis in HIV positive women with abnormal cytology in Mombasa. Kenya Infectious Agents and Cancer. 2016;11:17–25.CrossRefPubMed
23.
go back to reference Shiferaw N, Salvador-Davila G, Kassahun K, Brooks MI, Weldegebreal T, Tilahun Y, et al. The single-visit approach as a cervical cancer prevention strategy among women with HIV in Ethiopia: successes and lessons learned. Glob Health Sci Pract. 2016;4:87–98.CrossRefPubMedPubMedCentral Shiferaw N, Salvador-Davila G, Kassahun K, Brooks MI, Weldegebreal T, Tilahun Y, et al. The single-visit approach as a cervical cancer prevention strategy among women with HIV in Ethiopia: successes and lessons learned. Glob Health Sci Pract. 2016;4:87–98.CrossRefPubMedPubMedCentral
Metadata
Title
HPV genotype distribution among women with normal and abnormal cervical cytology presenting in a tertiary gynecology referral Clinic in Ethiopia
Authors
Dawit Wolday
Muluken Derese
Solomon Gebressellassie
Bekure Tsegaye
Wondwossen Ergete
Yirgu Gebrehiwot
Orit Caplan
Dana G. Wolf
Shlomo Maayan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Infectious Agents and Cancer / Issue 1/2018
Electronic ISSN: 1750-9378
DOI
https://doi.org/10.1186/s13027-018-0201-x

Other articles of this Issue 1/2018

Infectious Agents and Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine