Skip to main content
Top
Published in: Infectious Agents and Cancer 1/2017

Open Access 01-12-2017 | Research Article

Human papillomavirus infection in anal intraepithelial lesions from HIV infected Cuban men

Authors: Celia M. Limia, Yudira Soto, Yanara García, Orestes Blanco, Vivian Kourí, María V. López, María E. Toledo, Lissette Pérez, Yoanna Baños, Yaniris Caturla, Francisco Aguayo

Published in: Infectious Agents and Cancer | Issue 1/2017

Login to get access

Abstract

Background

An association between HPV infection and progression to anal squamous intraepithelial lesions (ASIL) has been established, specifically in high-risk populations such as HIV-infected men. In this population, anal cancer is one of the most common non-AIDS-defining malignancies.

Methods

A cross-sectional study to detect anal lesions and HPV infection was performed. Anal mucosa samples were collected from 56 HIV-infected men from Cuba. The cytological diagnosis was done according to Bethesda 2001 System. HPV DNA detection was determined by qPCR for six high-risk HPV types and end point PCR for low-risk HPV types (6 and 11). The end point PCR with nucleotide sequencing technique was achieved to detect other genotypes of HPV not included in the qPCR in those samples negative for HPV- 6 and 11 or negative for the six genotypes identified in the qPCR.

Results

Cytological diagnosis identified 53 of 56 (95%) men with abnormal anal cytology. Among those, 26% (14/53) had atypical squamous cells of undetermined significance (ASC-US), 4% (2/53) had atypical squamous cells of undetermined significance cannot exclude high-grade lesions (ASC-H), 64% (34/53) had low-grade squamous intraepithelial lesions (LSIL), and 6% (3/53) had high-grade squamous intraepithelial lesions (HSIL). HPV DNA was detected in 89% (50/56) of men and 79% had at least one of the high-risk HPV types. HPV- 16 was the most common genotype (52%), while HPV-18 was the most frequently detected genotype in men with HSIL. We found statistically significant differences in the HPV viral loads with respect to the cytology results (p = 0.0006) and that the practice of receptive anal sex was a risk factor for anal HPV infection (p = 0.032).

Conclusion

This study shows a high prevalence of ASIL and high-risk HPV infections in the study group and is the first study showing the distribution of HPV genotypes in HIV infected Cuban men with abnormal anal cytology. This information may be of importance for local decision makers to improve prevention strategies, including the introduction of HPV vaccine in Cuba.
Literature
1.
go back to reference Abbas A, Yang G, Fakih M. Management of anal cancer in 2010. Part 1: overview, screening, and diagnosis. Oncology (Williston Park). 2010;24:364–9. Abbas A, Yang G, Fakih M. Management of anal cancer in 2010. Part 1: overview, screening, and diagnosis. Oncology (Williston Park). 2010;24:364–9.
2.
go back to reference Tong WW, Hillman RJ, Kelleher AD, Grulich AE, Carr A. Anal intraepithelial neoplasia and squamous cell carcinoma in HIV-infected adults. HIV Med. 2014;15:65–76.CrossRefPubMed Tong WW, Hillman RJ, Kelleher AD, Grulich AE, Carr A. Anal intraepithelial neoplasia and squamous cell carcinoma in HIV-infected adults. HIV Med. 2014;15:65–76.CrossRefPubMed
3.
go back to reference van Aar F, Mooij SH, van der Sande MA, Speksnijder AG, Stolte IG, Meijer CJ, et al. Anal and penile high-risk human papillomavirus prevalence in HIV-negative and HIV-infected MSM. AIDS. 2013;27:2921–31.CrossRefPubMed van Aar F, Mooij SH, van der Sande MA, Speksnijder AG, Stolte IG, Meijer CJ, et al. Anal and penile high-risk human papillomavirus prevalence in HIV-negative and HIV-infected MSM. AIDS. 2013;27:2921–31.CrossRefPubMed
4.
go back to reference Palefsky JM, Rubin M. The epidemiology of anal human papillomavirus and related neoplasia. Obstet Gynecol Clin North Am. 2009;36:187–200.CrossRefPubMed Palefsky JM, Rubin M. The epidemiology of anal human papillomavirus and related neoplasia. Obstet Gynecol Clin North Am. 2009;36:187–200.CrossRefPubMed
5.
go back to reference Aragones C, Sanchez L, Campos J, Perez J. Antiretroviral therapy adherence in persons with HIV/AIDS in Cuba. MEDICC review. 2011;13:17–23.PubMed Aragones C, Sanchez L, Campos J, Perez J. Antiretroviral therapy adherence in persons with HIV/AIDS in Cuba. MEDICC review. 2011;13:17–23.PubMed
6.
go back to reference Palefsky JM, Holly EA, Efirdc JT, Da Costa M, Jay N, Berry JM, et al. Anal intraepithelial neoplasia in the highly active antiretroviral therapy era among HIV-positive men who have sex with men. AIDS. 2005;19:1407–14.CrossRefPubMed Palefsky JM, Holly EA, Efirdc JT, Da Costa M, Jay N, Berry JM, et al. Anal intraepithelial neoplasia in the highly active antiretroviral therapy era among HIV-positive men who have sex with men. AIDS. 2005;19:1407–14.CrossRefPubMed
7.
go back to reference Torres M, Gonzalez C, del Romero J, Viciana P, Ocampo A, Rodriguez-Fortunez P, et al. Anal human papillomavirus genotype distribution in HIV-infected men who have sex with men by geographical origin, age, and cytological status in a Spanish cohort. J Clin Microbiol. 2013;51:3512–20.CrossRefPubMedPubMedCentral Torres M, Gonzalez C, del Romero J, Viciana P, Ocampo A, Rodriguez-Fortunez P, et al. Anal human papillomavirus genotype distribution in HIV-infected men who have sex with men by geographical origin, age, and cytological status in a Spanish cohort. J Clin Microbiol. 2013;51:3512–20.CrossRefPubMedPubMedCentral
8.
go back to reference Sahasrabuddhe VV, Castle PE, Follansbee S, Borgonovo S, Tokugawa D, Schwartz LM, et al. Human papillomavirus genotype attribution and estimation of preventable fraction of anal intraepithelial neoplasia cases among HIV-infected men who have sex with men. J Infect Dis. 2013;207:392–401.CrossRefPubMed Sahasrabuddhe VV, Castle PE, Follansbee S, Borgonovo S, Tokugawa D, Schwartz LM, et al. Human papillomavirus genotype attribution and estimation of preventable fraction of anal intraepithelial neoplasia cases among HIV-infected men who have sex with men. J Infect Dis. 2013;207:392–401.CrossRefPubMed
9.
go back to reference Schwartz LM, Castle PE, Follansbee S, Borgonovo S, Fetterman B, Tokugawa D, et al. Risk factors for anal HPV infection and anal precancer in HIV-infected men who have sex with men. J Infect Dis. 2013;208:1768–75.CrossRefPubMedPubMedCentral Schwartz LM, Castle PE, Follansbee S, Borgonovo S, Fetterman B, Tokugawa D, et al. Risk factors for anal HPV infection and anal precancer in HIV-infected men who have sex with men. J Infect Dis. 2013;208:1768–75.CrossRefPubMedPubMedCentral
10.
go back to reference Lam JM, Hoch JS, Tinmouth J, Sano M, Raboud J, Salit IE. Cost-effectiveness of screening for anal precancers in HIV-positive men. AIDS. 2011;25:635–42.CrossRefPubMed Lam JM, Hoch JS, Tinmouth J, Sano M, Raboud J, Salit IE. Cost-effectiveness of screening for anal precancers in HIV-positive men. AIDS. 2011;25:635–42.CrossRefPubMed
11.
go back to reference Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, et al. The 2001 Bethesda system. Terminology for reporting results of cervical cytology. JAMA. 2002;287:2114–9.CrossRefPubMed Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, et al. The 2001 Bethesda system. Terminology for reporting results of cervical cytology. JAMA. 2002;287:2114–9.CrossRefPubMed
12.
go back to reference Park IU, Palefsky JM. Evaluation and management of anal intraepithelial neoplasia in HIV-negative and HIV-positive men who have sex with men. Curr Infect Dis Rep. 2010;12:126–33.CrossRefPubMedPubMedCentral Park IU, Palefsky JM. Evaluation and management of anal intraepithelial neoplasia in HIV-negative and HIV-positive men who have sex with men. Curr Infect Dis Rep. 2010;12:126–33.CrossRefPubMedPubMedCentral
13.
go back to reference Seaman WT, Andrews E, Couch M, Kojic EM, Cu-Uvin S, Palefsky J, et al. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR. Virol J. 2010;7:194.CrossRefPubMedPubMedCentral Seaman WT, Andrews E, Couch M, Kojic EM, Cu-Uvin S, Palefsky J, et al. Detection and quantitation of HPV in genital and oral tissues and fluids by real time PCR. Virol J. 2010;7:194.CrossRefPubMedPubMedCentral
14.
go back to reference Schmitz M, Scheungraber C, Herrmann J, Teller K, Gajda M, Runnebaum IB, et al. Quantitative multiplex PCR assay for the detection of the seven clinically most relevant high-risk HPV types. J Clin Virol. 2009;44:302–7.CrossRefPubMed Schmitz M, Scheungraber C, Herrmann J, Teller K, Gajda M, Runnebaum IB, et al. Quantitative multiplex PCR assay for the detection of the seven clinically most relevant high-risk HPV types. J Clin Virol. 2009;44:302–7.CrossRefPubMed
15.
go back to reference Soto Y, Kouri V, Martinez PA, Correa CB, Torres G, Goicolea A, et al. Standardization of a real-time based polymerase chain reaction system for the quantification of human papilomavirus of high oncogenic risk. Vaccimonitor. 2012;21:30–7. Soto Y, Kouri V, Martinez PA, Correa CB, Torres G, Goicolea A, et al. Standardization of a real-time based polymerase chain reaction system for the quantification of human papilomavirus of high oncogenic risk. Vaccimonitor. 2012;21:30–7.
16.
go back to reference Takacs T, Jeney C, Kovacs L, Mozes J, Benczik M, Sebe A. Molecular beacon-based real-time PCR method for detection of 15 high-risk and 5 low-risk HPV types. J Virol Methods 2008;149(1):153–62. Takacs T, Jeney C, Kovacs L, Mozes J, Benczik M, Sebe A. Molecular beacon-based real-time PCR method for detection of 15 high-risk and 5 low-risk HPV types. J Virol Methods 2008;149(1):153–62.
17.
go back to reference Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38:357–61.PubMedPubMedCentral Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38:357–61.PubMedPubMedCentral
18.
go back to reference Tamura KPN, Stecher G, Nei M, Kumar S. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRefPubMedPubMedCentral Tamura KPN, Stecher G, Nei M, Kumar S. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRefPubMedPubMedCentral
19.
go back to reference Panther LA, Wagner K, Proper J, Fugelso DK, Chatis PA, Weeden W, et al. High resolution anoscopy findings for men who have sex with men: inaccuracy of anal cytology as a predictor of histologic high-grade anal intraepithelial neoplasia and the impact of HIV serostatus. Clin Infect Dis. 2004;38:1490–2.CrossRefPubMed Panther LA, Wagner K, Proper J, Fugelso DK, Chatis PA, Weeden W, et al. High resolution anoscopy findings for men who have sex with men: inaccuracy of anal cytology as a predictor of histologic high-grade anal intraepithelial neoplasia and the impact of HIV serostatus. Clin Infect Dis. 2004;38:1490–2.CrossRefPubMed
20.
go back to reference van der Snoek EM, Niesters HG, Mulder PG, van Doornum GJ, Osterhaus AD, van der Meijden WI. Human papillomavirus infection in men who have sex with men participating in a Dutch gay-cohort study. Sex Transm Dis. 2003;30:639–44.CrossRefPubMed van der Snoek EM, Niesters HG, Mulder PG, van Doornum GJ, Osterhaus AD, van der Meijden WI. Human papillomavirus infection in men who have sex with men participating in a Dutch gay-cohort study. Sex Transm Dis. 2003;30:639–44.CrossRefPubMed
21.
go back to reference Vajdic CM, van Leeuwen MT, Jin F, Prestage G, Medley G, Hillman RJ, et al. Anal human papillomavirus genotype diversity and co-infection in a community-based sample of homosexual men. Sex Transm Infect. 2009;85:330–5.CrossRefPubMed Vajdic CM, van Leeuwen MT, Jin F, Prestage G, Medley G, Hillman RJ, et al. Anal human papillomavirus genotype diversity and co-infection in a community-based sample of homosexual men. Sex Transm Infect. 2009;85:330–5.CrossRefPubMed
22.
go back to reference Blanco OA, Soto Y, Blanco B, Acosta S, Capó de Paz V, Toledo ME. Detection of Human Papillomavirus (HPV) in anogenital condyloma from HIV-1 infected cuban men. Rev Biomed. 2011;22:21–30. Blanco OA, Soto Y, Blanco B, Acosta S, Capó de Paz V, Toledo ME. Detection of Human Papillomavirus (HPV) in anogenital condyloma from HIV-1 infected cuban men. Rev Biomed. 2011;22:21–30.
23.
go back to reference de Pokomandy A, Rouleau D, Ghattas G, Vezina S, Cote P, Macleod J, et al. Prevalence, clearance, and incidence of anal human papillomavirus infection in HIV-infected men: the HIPVIRG cohort study. J Infect Dis. 2009;199:965–73.CrossRefPubMed de Pokomandy A, Rouleau D, Ghattas G, Vezina S, Cote P, Macleod J, et al. Prevalence, clearance, and incidence of anal human papillomavirus infection in HIV-infected men: the HIPVIRG cohort study. J Infect Dis. 2009;199:965–73.CrossRefPubMed
25.
go back to reference Colon-Lopez V, Ortiz AP, Del Toro-Mejias L, Clatts MC, Palefsky JM. Epidemiology of anal HPV infection in high-risk men attending a sexually transmitted infection clinic in Puerto Rico. PLoS One. 2014;9:e83209.CrossRefPubMedPubMedCentral Colon-Lopez V, Ortiz AP, Del Toro-Mejias L, Clatts MC, Palefsky JM. Epidemiology of anal HPV infection in high-risk men attending a sexually transmitted infection clinic in Puerto Rico. PLoS One. 2014;9:e83209.CrossRefPubMedPubMedCentral
26.
go back to reference de Pokomandy A, Rouleau D, Ghattas G, Trottier H, Vezina S, Cote P, et al. HAART and progression to high-grade anal intraepithelial neoplasia in men who have sex with men and are infected with HIV. Clin Infect Dis. 2011;52:1174–81.CrossRefPubMed de Pokomandy A, Rouleau D, Ghattas G, Trottier H, Vezina S, Cote P, et al. HAART and progression to high-grade anal intraepithelial neoplasia in men who have sex with men and are infected with HIV. Clin Infect Dis. 2011;52:1174–81.CrossRefPubMed
27.
go back to reference Goldstone S, Palefsky JM, Giuliano AR, Moreira Jr ED, Aranda C, Jessen H, et al. Prevalence of and risk factors for human papillomavirus (HPV) infection among HIV-seronegative men who have sex with men. J Infect Dis. 2011;203:66–74.CrossRefPubMedPubMedCentral Goldstone S, Palefsky JM, Giuliano AR, Moreira Jr ED, Aranda C, Jessen H, et al. Prevalence of and risk factors for human papillomavirus (HPV) infection among HIV-seronegative men who have sex with men. J Infect Dis. 2011;203:66–74.CrossRefPubMedPubMedCentral
28.
go back to reference Schlecht HP, Fugelso DK, Murphy RK, Wagner KT, Doweiko JP, Proper J, et al. Frequency of occult high-grade squamous intraepithelial neoplasia and invasive cancer within anal condylomata in men who have sex with men. Clin Infect Dis. 2010;51:107–10.CrossRefPubMedPubMedCentral Schlecht HP, Fugelso DK, Murphy RK, Wagner KT, Doweiko JP, Proper J, et al. Frequency of occult high-grade squamous intraepithelial neoplasia and invasive cancer within anal condylomata in men who have sex with men. Clin Infect Dis. 2010;51:107–10.CrossRefPubMedPubMedCentral
29.
go back to reference Machalek DA, Grulich AE, Jin F, Templeton DJ, Poynten IM. The epidemiology and natural history of anal human papillomavirus infection in men who have sex with men. Sex Health. 2012;9:527–37.CrossRefPubMed Machalek DA, Grulich AE, Jin F, Templeton DJ, Poynten IM. The epidemiology and natural history of anal human papillomavirus infection in men who have sex with men. Sex Health. 2012;9:527–37.CrossRefPubMed
30.
31.
go back to reference Nyitray AG, da Silva RJ C, Baggio ML, Lu B, Smith D, Abrahamsen M, et al. Age-specific prevalence of and risk factors for anal human papillomavirus (HPV) among men who have sex with women and men who have sex with men: the HPV in men (HIM) study. J Infect Dis. 2011;203:49–57.CrossRefPubMedPubMedCentral Nyitray AG, da Silva RJ C, Baggio ML, Lu B, Smith D, Abrahamsen M, et al. Age-specific prevalence of and risk factors for anal human papillomavirus (HPV) among men who have sex with women and men who have sex with men: the HPV in men (HIM) study. J Infect Dis. 2011;203:49–57.CrossRefPubMedPubMedCentral
32.
go back to reference Tamalet C, Obry-Roguet V, Ressiot E, Bregigeon S, Del Grande J, Poizot-Martin I. Distribution of human papillomavirus genotypes, assessment of HPV 16 and 18 viral load and anal related lesions in HIV positive patients: a cross-sectional analysis. J Med Virol. 2014;86:419–25.CrossRefPubMed Tamalet C, Obry-Roguet V, Ressiot E, Bregigeon S, Del Grande J, Poizot-Martin I. Distribution of human papillomavirus genotypes, assessment of HPV 16 and 18 viral load and anal related lesions in HIV positive patients: a cross-sectional analysis. J Med Virol. 2014;86:419–25.CrossRefPubMed
33.
go back to reference Rodel F, Wieland U, Fraunholz I, Kitz J, Rave-Frank M, Wolff HA, et al. Human papillomavirus DNA load and p16(INK4a) expression predict for local control in patients with anal squamous cell carcinoma treated with chemoradiotherapy. Int J Cancer. 2015;136:278–88.CrossRefPubMed Rodel F, Wieland U, Fraunholz I, Kitz J, Rave-Frank M, Wolff HA, et al. Human papillomavirus DNA load and p16(INK4a) expression predict for local control in patients with anal squamous cell carcinoma treated with chemoradiotherapy. Int J Cancer. 2015;136:278–88.CrossRefPubMed
34.
go back to reference Poizot-Martin I, Henry M, Benhaim S, Obry-Roguet V, Figarella D, Tamalet C. High level of HPV 16 and 18 DNA load in anal swabs from male and female HIV-1 infected patients. J Clin Virol. 2009;44:314–7.CrossRefPubMed Poizot-Martin I, Henry M, Benhaim S, Obry-Roguet V, Figarella D, Tamalet C. High level of HPV 16 and 18 DNA load in anal swabs from male and female HIV-1 infected patients. J Clin Virol. 2009;44:314–7.CrossRefPubMed
Metadata
Title
Human papillomavirus infection in anal intraepithelial lesions from HIV infected Cuban men
Authors
Celia M. Limia
Yudira Soto
Yanara García
Orestes Blanco
Vivian Kourí
María V. López
María E. Toledo
Lissette Pérez
Yoanna Baños
Yaniris Caturla
Francisco Aguayo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Infectious Agents and Cancer / Issue 1/2017
Electronic ISSN: 1750-9378
DOI
https://doi.org/10.1186/s13027-017-0118-9

Other articles of this Issue 1/2017

Infectious Agents and Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine