Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2021

Open Access 01-12-2021 | Research

Extending the phenotypic spectrum of PRPF8, PRPH2, RP1 and RPGR, and the genotypic spectrum of early-onset severe retinal dystrophy

Authors: Michalis Georgiou, Naser Ali, Elizabeth Yang, Parampal S. Grewal, Tryfon Rotsos, Nikolas Pontikos, Anthony G. Robson, Michel Michaelides

Published in: Orphanet Journal of Rare Diseases | Issue 1/2021

Login to get access

Abstract

Purpose

To present the detailed retinal phenotype of patients with Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy (LCA/EOSRD) caused by sequence variants in four genes, either not (n = 1) or very rarely (n = 3) previously associated with the disease.

Methods

Retrospective case series of LCA/EOSRD from four pedigrees. Chart review of clinical notes, multimodal retinal imaging, electrophysiology, and molecular genetic testing at a single tertiary referral center (Moorfields Eye Hospital, London, UK).

Results

The mean age of presentation was 3 months of age, with disease onset in the first year of life in all cases. Molecular genetic testing revealed the following disease-causing variants: PRPF8 (heterozygous c.5804G > A), PRPH2 (homozygous c.620_627delinsTA, novel variant), RP1 (homozygous c.4147_4151delGGATT, novel variant) and RPGR (heterozygous c.1894_1897delGACA). PRPF8, PRPH2, and RP1 variants have very rarely been reported, either as unique cases or case reports, with limited clinical data presented. RPGR variants have not previously been associated with LCA/EOSRD. Clinical history and detailed retinal imaging are presented.

Conclusions

The reported cases extend the phenotypic spectrum of PRPF8-, PRPH2-, RP1-, and RPGR-associated disease, and the genotypic spectrum of LCA/EOSRD. The study highlights the importance of retinal and functional phenotyping, and the importance of specific genetic diagnosis to potential future therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101(9):1147–54.CrossRef Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101(9):1147–54.CrossRef
2.
go back to reference Sheck L, Davies WIL, Moradi P, et al. Leber congenital Amaurosis Associated with Mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies. Ophthalmology. 2018;125(6):894–903.CrossRef Sheck L, Davies WIL, Moradi P, et al. Leber congenital Amaurosis Associated with Mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies. Ophthalmology. 2018;125(6):894–903.CrossRef
3.
go back to reference Bouzia Z, Georgiou M, Hull S, et al. GUCY2D-associated leber congenital amaurosis: a retrospective natural history study in preparation for trials of novel therapies. Am J Ophthalmol. 2020;210:59–70.CrossRef Bouzia Z, Georgiou M, Hull S, et al. GUCY2D-associated leber congenital amaurosis: a retrospective natural history study in preparation for trials of novel therapies. Am J Ophthalmol. 2020;210:59–70.CrossRef
4.
go back to reference van den Hurk JA, Rashbass P, Roepman R, et al. Characterization of the Crumbs homolog 2 (CRB2) gene and analysis of its role in retinitis pigmentosa and Leber congenital amaurosis. Mol Vis. 2005;11:263–73.PubMed van den Hurk JA, Rashbass P, Roepman R, et al. Characterization of the Crumbs homolog 2 (CRB2) gene and analysis of its role in retinitis pigmentosa and Leber congenital amaurosis. Mol Vis. 2005;11:263–73.PubMed
5.
go back to reference Gu SM, Thompson DA, Srikumari CR, et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet. 1997;17(2):194–7.CrossRef Gu SM, Thompson DA, Srikumari CR, et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet. 1997;17(2):194–7.CrossRef
6.
go back to reference den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.CrossRef den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.CrossRef
7.
go back to reference Xu K, Xie Y, Sun T, et al. Genetic and clinical findings in a Chinese cohort with Leber congenital amaurosis and early onset severe retinal dystrophy. Br J Ophthalmol 2019. Xu K, Xie Y, Sun T, et al. Genetic and clinical findings in a Chinese cohort with Leber congenital amaurosis and early onset severe retinal dystrophy. Br J Ophthalmol 2019.
8.
go back to reference Kumaran N, Georgiou M, Bainbridge JWB, et al. Retinal structure in RPE65-associated retinal dystrophy. Invest Ophthalmol Vis Sci. 2020;61(4):47.CrossRef Kumaran N, Georgiou M, Bainbridge JWB, et al. Retinal structure in RPE65-associated retinal dystrophy. Invest Ophthalmol Vis Sci. 2020;61(4):47.CrossRef
9.
go back to reference Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.CrossRef Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.CrossRef
10.
go back to reference Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.CrossRef Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.CrossRef
11.
go back to reference McCulloch DL, Marmor MF, Brigell MG, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12.CrossRef McCulloch DL, Marmor MF, Brigell MG, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12.CrossRef
12.
go back to reference Bach M, Brigell MG, Hawlina M, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7.CrossRef Bach M, Brigell MG, Hawlina M, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7.CrossRef
13.
go back to reference Holder GE, Robson AG. Paediatric electrophysiology: a practical approach. In: Lorenz B, Moore AT, eds. pediatric ophthalmology, neuro-ophthalmology, genetics. Springer, Berlin, 2006. Holder GE, Robson AG. Paediatric electrophysiology: a practical approach. In: Lorenz B, Moore AT, eds. pediatric ophthalmology, neuro-ophthalmology, genetics. Springer, Berlin, 2006.
14.
go back to reference Rentzsch P, Witten D, Cooper GM, et al. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–94.CrossRef Rentzsch P, Witten D, Cooper GM, et al. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–94.CrossRef
15.
go back to reference Kalitzeos A, Samra R, Kasilian M, et al. Cellular imaging of the tapetal-like reflex in carriers of RPGR-associated retinopathy. Retina. 2019;39(3):570–80.CrossRef Kalitzeos A, Samra R, Kasilian M, et al. Cellular imaging of the tapetal-like reflex in carriers of RPGR-associated retinopathy. Retina. 2019;39(3):570–80.CrossRef
16.
go back to reference Luo HR, Moreau GA, Levin N, Moore MJ. The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA. 1999;5(7):893–908.CrossRef Luo HR, Moreau GA, Levin N, Moore MJ. The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA. 1999;5(7):893–908.CrossRef
17.
go back to reference Xu Y, Guan L, Shen T, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.CrossRef Xu Y, Guan L, Shen T, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.CrossRef
18.
go back to reference Pontikos N, Arno G, Jurkute N, et al. Genetic basis of inherited retinal disease in a molecularly characterised cohort of over 3000 families from the United Kingdom. Ophthalmology 2020. Pontikos N, Arno G, Jurkute N, et al. Genetic basis of inherited retinal disease in a molecularly characterised cohort of over 3000 families from the United Kingdom. Ophthalmology 2020.
19.
go back to reference Ma J, Norton JC, Allen AC, et al. Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II. Genomics. 1995;28(2):212–9.CrossRef Ma J, Norton JC, Allen AC, et al. Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II. Genomics. 1995;28(2):212–9.CrossRef
20.
go back to reference Farjo R, Naash MI. The role of Rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet. 2006;27(4):117–22.CrossRef Farjo R, Naash MI. The role of Rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet. 2006;27(4):117–22.CrossRef
21.
go back to reference Rahman N, Georgiou M, Khan KN, Michaelides M. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol. 2020;104(4):451–60.CrossRef Rahman N, Georgiou M, Khan KN, Michaelides M. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol. 2020;104(4):451–60.CrossRef
22.
go back to reference Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet. 2013;50(10):674–88.CrossRef Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet. 2013;50(10):674–88.CrossRef
23.
go back to reference Daftarian N, Mirrahimi M, Sabbaghi H, et al. PRPH2 mutation as the cause of various clinical manifestations in a family affected with inherited retinal dystrophy. Ophthalmic Genet. 2019;40(5):436–42.CrossRef Daftarian N, Mirrahimi M, Sabbaghi H, et al. PRPH2 mutation as the cause of various clinical manifestations in a family affected with inherited retinal dystrophy. Ophthalmic Genet. 2019;40(5):436–42.CrossRef
24.
go back to reference Pierce EA, Quinn T, Meehan T, et al. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet. 1999;22(3):248–54.CrossRef Pierce EA, Quinn T, Meehan T, et al. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet. 1999;22(3):248–54.CrossRef
25.
go back to reference Chen LJ, Lai TY, Tam PO, et al. Compound heterozygosity of two novel truncation mutations in RP1 causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51(4):2236–42.CrossRef Chen LJ, Lai TY, Tam PO, et al. Compound heterozygosity of two novel truncation mutations in RP1 causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51(4):2236–42.CrossRef
26.
go back to reference Kabir F, Ullah I, Ali S, et al. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases. Mol Vis. 2016;22:610–25.PubMedPubMedCentral Kabir F, Ullah I, Ali S, et al. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases. Mol Vis. 2016;22:610–25.PubMedPubMedCentral
27.
go back to reference Amrani N, Ganesan R, Kervestin S, et al. A faux 3’-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature. 2004;432(7013):112–8.CrossRef Amrani N, Ganesan R, Kervestin S, et al. A faux 3’-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature. 2004;432(7013):112–8.CrossRef
28.
go back to reference Kurata K, Hosono K, Hotta Y. Clinical and genetic findings of a Japanese patient with RP1-related autosomal recessive retinitis pigmentosa. Doc Ophthalmol. 2018;137(1):47–56.CrossRef Kurata K, Hosono K, Hotta Y. Clinical and genetic findings of a Japanese patient with RP1-related autosomal recessive retinitis pigmentosa. Doc Ophthalmol. 2018;137(1):47–56.CrossRef
29.
go back to reference Verbakel SK, van Huet RAC, den Hollander AI, et al. Macular dystrophy and cone-rod dystrophy caused by mutations in the RP1 gene: extending the RP1 disease spectrum. Invest Ophthalmol Vis Sci. 2019;60(4):1192–203.CrossRef Verbakel SK, van Huet RAC, den Hollander AI, et al. Macular dystrophy and cone-rod dystrophy caused by mutations in the RP1 gene: extending the RP1 disease spectrum. Invest Ophthalmol Vis Sci. 2019;60(4):1192–203.CrossRef
30.
go back to reference Ghosh AK, Murga-Zamalloa CA, Chan L, et al. Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development. Hum Mol Genet. 2010;19(1):90–8.CrossRef Ghosh AK, Murga-Zamalloa CA, Chan L, et al. Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development. Hum Mol Genet. 2010;19(1):90–8.CrossRef
31.
go back to reference Vervoort R, Lennon A, Bird AC, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000;25(4):462–6.CrossRef Vervoort R, Lennon A, Bird AC, et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet. 2000;25(4):462–6.CrossRef
32.
go back to reference Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–58.CrossRef Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–58.CrossRef
33.
go back to reference Gill JS, Georgiou M, Kalitzeos A, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol 2019. Gill JS, Georgiou M, Kalitzeos A, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol 2019.
34.
go back to reference Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease: an update. Hum Mutat. 2007;28(4):322–8.CrossRef Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease: an update. Hum Mutat. 2007;28(4):322–8.CrossRef
35.
go back to reference Ebenezer ND, Michaelides M, Jenkins SA, et al. Identification of novel RPGR ORF15 mutations in X-linked progressive cone-rod dystrophy (XLCORD) families. Invest Ophthalmol Vis Sci. 2005;46(6):1891–8.CrossRef Ebenezer ND, Michaelides M, Jenkins SA, et al. Identification of novel RPGR ORF15 mutations in X-linked progressive cone-rod dystrophy (XLCORD) families. Invest Ophthalmol Vis Sci. 2005;46(6):1891–8.CrossRef
36.
go back to reference Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32–41.CrossRef Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32–41.CrossRef
37.
go back to reference Tee JJ, Smith AJ, Hardcastle AJ, Michaelides M. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2016;100(8):1022–7.CrossRef Tee JJ, Smith AJ, Hardcastle AJ, Michaelides M. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2016;100(8):1022–7.CrossRef
38.
go back to reference Fahim AT, Bowne SJ, Sullivan LS, et al. Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS ONE. 2011;6(8):e23021.CrossRef Fahim AT, Bowne SJ, Sullivan LS, et al. Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS ONE. 2011;6(8):e23021.CrossRef
39.
go back to reference Georgiou M, Fujinami K, Michaelides M. Retinal imaging in inherited retinal diseases. Ann Eye Sci. 2020;5:25.CrossRef Georgiou M, Fujinami K, Michaelides M. Retinal imaging in inherited retinal diseases. Ann Eye Sci. 2020;5:25.CrossRef
40.
go back to reference Fahim AT, Sullivan LS, Bowne SJ, et al. X-Chromosome Inactivation Is a Biomarker of Clinical Severity in Female Carriers of RPGR-Associated X-Linked Retinitis Pigmentosa. Ophthalmol Retina 2019. Fahim AT, Sullivan LS, Bowne SJ, et al. X-Chromosome Inactivation Is a Biomarker of Clinical Severity in Female Carriers of RPGR-Associated X-Linked Retinitis Pigmentosa. Ophthalmol Retina 2019.
41.
go back to reference Comander J, Weigel-DiFranco C, Sandberg MA, Berson EL. Visual function in carriers of X-linked retinitis pigmentosa. Ophthalmology. 2015;122(9):1899–906.CrossRef Comander J, Weigel-DiFranco C, Sandberg MA, Berson EL. Visual function in carriers of X-linked retinitis pigmentosa. Ophthalmology. 2015;122(9):1899–906.CrossRef
42.
go back to reference Conley SM, Naash MI. Gene therapy for PRPH2-associated ocular disease: challenges and prospects. Cold Spring Harb Perspect Med. 2014;4(11):a017376.CrossRef Conley SM, Naash MI. Gene therapy for PRPH2-associated ocular disease: challenges and prospects. Cold Spring Harb Perspect Med. 2014;4(11):a017376.CrossRef
43.
go back to reference Waldron PV, Di Marco F, Kruczek K, et al. Transplanted donor- or stem cell-derived cone photoreceptors can both integrate and undergo material transfer in an environment-dependent manner. Stem Cell Rep. 2018;10(2):406–21.CrossRef Waldron PV, Di Marco F, Kruczek K, et al. Transplanted donor- or stem cell-derived cone photoreceptors can both integrate and undergo material transfer in an environment-dependent manner. Stem Cell Rep. 2018;10(2):406–21.CrossRef
44.
go back to reference Sahaboglu A, Sharif A, Feng L, et al. Temporal progression of PARP activity in the Prph2 mutant rd2 mouse: neuroprotective effects of the PARP inhibitor PJ34. PLoS ONE. 2017;12(7):e0181374.CrossRef Sahaboglu A, Sharif A, Feng L, et al. Temporal progression of PARP activity in the Prph2 mutant rd2 mouse: neuroprotective effects of the PARP inhibitor PJ34. PLoS ONE. 2017;12(7):e0181374.CrossRef
45.
go back to reference Nanda A, McClements ME, Clouston P, et al. The location of exon 4 mutations in RP1 raises challenges for genetic counseling and gene therapy. Am J Ophthalmol. 2019;202:23–9.CrossRef Nanda A, McClements ME, Clouston P, et al. The location of exon 4 mutations in RP1 raises challenges for genetic counseling and gene therapy. Am J Ophthalmol. 2019;202:23–9.CrossRef
Metadata
Title
Extending the phenotypic spectrum of PRPF8, PRPH2, RP1 and RPGR, and the genotypic spectrum of early-onset severe retinal dystrophy
Authors
Michalis Georgiou
Naser Ali
Elizabeth Yang
Parampal S. Grewal
Tryfon Rotsos
Nikolas Pontikos
Anthony G. Robson
Michel Michaelides
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2021
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-021-01759-8

Other articles of this Issue 1/2021

Orphanet Journal of Rare Diseases 1/2021 Go to the issue