Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2020

Open Access 01-12-2020 | Angioedema | Research

Factor XII in PMM2-CDG patients: role of N-glycosylation in the secretion and function of the first element of the contact pathway

Authors: Raquel López-Gálvez, María Eugenia de la Morena-Barrio, Alberto López-Lera, Monika Pathak, Antonia Miñano, Mercedes Serrano, Delphine Borgel, Vanessa Roldán, Vicente Vicente, Jonas Emsley, Javier Corral

Published in: Orphanet Journal of Rare Diseases | Issue 1/2020

Login to get access

Abstract

Background

Congenital disorders of glycosylation (CDG) are rare diseases with impaired glycosylation and multiorgan disfunction, including hemostatic and inflammatory disorders. Factor XII (FXII), the first element of the contact phase, has an emerging role in hemostasia and inflammation. FXII deficiency protects against thrombosis and the p.Thr309Lys variant is involved in hereditary angioedema through the hyperreactivity caused by the associated defective O-glycosylation. We studied FXII in CDG aiming to supply further information of the glycosylation of this molecule, and its functional and clinical effects. Plasma FXII from 46 PMM2-CDG patients was evaluated by coagulometric and by Western Blot in basal conditions, treated with N-glycosydase F or activated by silica or dextran sulfate. A recombinant FXII expression model was used to validate the secretion and glycosylation of wild-type and variants targeting the two described FXII N-glycosylation sites (p.Asn230Lys; p.Asn414Lys) as well as the p.Thr309Lys variant.

Results

PMM2-CDG patients had normal FXII levels (117%) but high proportions of a form lacking N-glycosylation at Asn414. Recombinant FXII p.Asn230Lys, and p.Asn230Lys&p.Asn414Lys had impaired secretion and increased intracellular retention compared to wild-type, p.Thr309Lys and p.Asn414Lys variants. The hypoglycosylated form of PMM2-CDG activated similarly than FXII fully glycosylated. Accordingly, no PMM2-CDG had angioedema. FXII levels did not associate to vascular events, but hypoglycosylated FXII, like hypoglycosylated transferrin, antithrombin and FXI levels did it.

Conclusions

N-glycosylation at Asn230 is essential for FXII secretion. PMM2-CDG have high levels of FXII lacking N-glycosylation at Asn414, but this glycoform displays similar activation than fully glycosylated, explaining the absence of angioedema in CDG.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pauer HU, Renné T, Hemmerlein B, Legler T, Fritzlar S, Adham I, et al. Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo. Thromb Haemost. 2004;92(3):503–8. PubMedCrossRef Pauer HU, Renné T, Hemmerlein B, Legler T, Fritzlar S, Adham I, et al. Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo. Thromb Haemost. 2004;92(3):503–8. PubMedCrossRef
2.
go back to reference Maruyama H, Brooks MB, Stablein A, Frye A. Factor XII deficiency is common in domestic cats and associated with two high frequency F12 mutations. Gene. 2019;706:6–12. PubMedCrossRef Maruyama H, Brooks MB, Stablein A, Frye A. Factor XII deficiency is common in domestic cats and associated with two high frequency F12 mutations. Gene. 2019;706:6–12. PubMedCrossRef
3.
go back to reference Key NS. Epidemiologic and clinical data linking factors XI and XII to thrombosis. Hematology. 2014;2014(1):66–70. PubMedCrossRef Key NS. Epidemiologic and clinical data linking factors XI and XII to thrombosis. Hematology. 2014;2014(1):66–70. PubMedCrossRef
5.
go back to reference Kuijpers MJE, Van Der Meijden PEJ, Feijge MAH, Mattheij NJA, May F, Govers-Riemslag J, et al. Factor XII regulates the pathological process of thrombus formation on ruptured plaques. Arterioscler Thromb Vasc Biol. 2014;34(8):1674–80. PubMedCrossRef Kuijpers MJE, Van Der Meijden PEJ, Feijge MAH, Mattheij NJA, May F, Govers-Riemslag J, et al. Factor XII regulates the pathological process of thrombus formation on ruptured plaques. Arterioscler Thromb Vasc Biol. 2014;34(8):1674–80. PubMedCrossRef
6.
go back to reference Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139(6):1143–56. PubMedPubMedCentralCrossRef Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139(6):1143–56. PubMedPubMedCentralCrossRef
7.
go back to reference Xu Y, Cai TQ, Castriota G, Zhou Y, Hoos L, Jochnowitz N, et al. Factor XIIa inhibition by Infestin-4: in vitro mode of action and in vivo antithrombotic benefit. Thromb Haemost. 2013;111:694–704. PubMedCrossRef Xu Y, Cai TQ, Castriota G, Zhou Y, Hoos L, Jochnowitz N, et al. Factor XIIa inhibition by Infestin-4: in vitro mode of action and in vivo antithrombotic benefit. Thromb Haemost. 2013;111:694–704. PubMedCrossRef
8.
go back to reference Yau JW, Liao P, Fredenburgh JC, Stafford AR, Revenko AS, Monia BP, et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood. 2014;123(13):2102–7. PubMedCrossRef Yau JW, Liao P, Fredenburgh JC, Stafford AR, Revenko AS, Monia BP, et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood. 2014;123(13):2102–7. PubMedCrossRef
9.
go back to reference Larsson M, Rayzman V, Nolte MW, Nickel KF, Björkqvist J, Jämsä A, et al. Cardiovascular disease: a factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med. 2014;6:222ra17. PubMedCrossRef Larsson M, Rayzman V, Nolte MW, Nickel KF, Björkqvist J, Jämsä A, et al. Cardiovascular disease: a factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med. 2014;6:222ra17. PubMedCrossRef
10.
go back to reference Matafonov A, Leung PY, Gailani AE, Grach SL, Puy C, Cheng Q, et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood. 2014;123(11):1739–46. PubMedPubMedCentralCrossRef Matafonov A, Leung PY, Gailani AE, Grach SL, Puy C, Cheng Q, et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood. 2014;123(11):1739–46. PubMedPubMedCentralCrossRef
11.
go back to reference Bork K, Wulff K, Meinke P, Wagner N, Hardt J, Witzke G. A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clin Immunol. 2011;141(1):31–5. PubMedCrossRef Bork K, Wulff K, Meinke P, Wagner N, Hardt J, Witzke G. A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clin Immunol. 2011;141(1):31–5. PubMedCrossRef
12.
go back to reference Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun. 2006;343(4):1286–9. PubMedCrossRef Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun. 2006;343(4):1286–9. PubMedCrossRef
13.
go back to reference Kiss N, Barabás E, Várnai K, Halász A, Varga LÁ, Prohászka Z, et al. Novel duplication in the F12 gene in a patient with recurrent angioedema. Clin Immunol. 2013;149(1):142–5. PubMedCrossRef Kiss N, Barabás E, Várnai K, Halász A, Varga LÁ, Prohászka Z, et al. Novel duplication in the F12 gene in a patient with recurrent angioedema. Clin Immunol. 2013;149(1):142–5. PubMedCrossRef
14.
go back to reference Gelincik A, Demir S, Olgaç M, Karaman V, Toksoy G, Çolakoʇlu B, et al. Idiopathic angioedema with F12 mutation: is it a new entity. Ann Allergy Asthma Immunol. 2015;114:154–6. PubMedCrossRef Gelincik A, Demir S, Olgaç M, Karaman V, Toksoy G, Çolakoʇlu B, et al. Idiopathic angioedema with F12 mutation: is it a new entity. Ann Allergy Asthma Immunol. 2015;114:154–6. PubMedCrossRef
15.
go back to reference Amiral J, Seghatchian J. The contact system at the crossroads of various key patho-physiological functions: update on present understanding, laboratory exploration and future perspectives. Transfus Apher Sci. 2019;58:216–22. PubMedCrossRef Amiral J, Seghatchian J. The contact system at the crossroads of various key patho-physiological functions: update on present understanding, laboratory exploration and future perspectives. Transfus Apher Sci. 2019;58:216–22. PubMedCrossRef
16.
go back to reference Mitra N, Sinha S, Ramya TNC, Surolia A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci. 2006;31:156–63. PubMedCrossRef Mitra N, Sinha S, Ramya TNC, Surolia A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci. 2006;31:156–63. PubMedCrossRef
17.
go back to reference Björkqvist J, de Maat S, Lewandrowski U, Di Gennaro A, Oschatz C, Schönig K, et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Investig. 2015;125(8):3132–46. PubMedCrossRef Björkqvist J, de Maat S, Lewandrowski U, Di Gennaro A, Oschatz C, Schönig K, et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Investig. 2015;125(8):3132–46. PubMedCrossRef
19.
go back to reference Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995;377(3):318–20. PubMedCrossRef Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995;377(3):318–20. PubMedCrossRef
20.
go back to reference Babovic-Vuksanovic D, O’Brien JF. Laboratory diagnosis of congenital disorders of glycosylation type I by analysis of transferrin glycoforms. Mol Diagn Ther. 2007;11:303–11. PubMedCrossRef Babovic-Vuksanovic D, O’Brien JF. Laboratory diagnosis of congenital disorders of glycosylation type I by analysis of transferrin glycoforms. Mol Diagn Ther. 2007;11:303–11. PubMedCrossRef
21.
go back to reference Pascreau T, Morena-Barrio ME, Lasne D, Serrano M, Bianchini E, Kossorotoff M, et al. Elevated thrombin generation in patients with congenital disorder of glycosylation and combined coagulation factor deficiencies. J Thromb Haemost. 2019;17:1798–807. PubMedCrossRef Pascreau T, Morena-Barrio ME, Lasne D, Serrano M, Bianchini E, Kossorotoff M, et al. Elevated thrombin generation in patients with congenital disorder of glycosylation and combined coagulation factor deficiencies. J Thromb Haemost. 2019;17:1798–807. PubMedCrossRef
22.
go back to reference de la Morena-Barrio ME, Martínez-Martínez I, de Cos C, Wypasek E, Roldán V, Undas A, et al. Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect. J Thromb Haemost. 2016;14(8):1549–60. PubMedCrossRef de la Morena-Barrio ME, Martínez-Martínez I, de Cos C, Wypasek E, Roldán V, Undas A, et al. Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect. J Thromb Haemost. 2016;14(8):1549–60. PubMedCrossRef
23.
go back to reference Kanaji T, Okamura T, Osaki K, Kuroiwa M, Shimoda K, Hamasaki N, et al. A common genetic polymorphism (46 C to T substitution) in the 5’- untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood. 1998;91(6):2010–4. PubMedCrossRef Kanaji T, Okamura T, Osaki K, Kuroiwa M, Shimoda K, Hamasaki N, et al. A common genetic polymorphism (46 C to T substitution) in the 5’- untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood. 1998;91(6):2010–4. PubMedCrossRef
25.
go back to reference Jaeken J. Congenital disorders of glycosylation. In: Blau N, Hoffmann GF, Leonard JV, Clarke JTR, editors. Physician’s guide to the treatment and follow-up of metabolic diseases. New York: Springer; 2006. p. 217–20. CrossRef Jaeken J. Congenital disorders of glycosylation. In: Blau N, Hoffmann GF, Leonard JV, Clarke JTR, editors. Physician’s guide to the treatment and follow-up of metabolic diseases. New York: Springer; 2006. p. 217–20. CrossRef
26.
go back to reference Stanley P, Taniguchi N, Aebi M. Chapter 9. N-glycans, essentials of glycobiology. In: Essentials of Glycobiology, 2nd edn; 2017. Stanley P, Taniguchi N, Aebi M. Chapter 9. N-glycans, essentials of glycobiology. In: Essentials of Glycobiology, 2nd edn; 2017.
27.
go back to reference Linssen M, Mohamed M, Wevers RA, Lefeber DJ, Morava E. Thrombotic complications in patients with PMM2-CDG. Mol Genet Metab. 2013;109(1):107–11. PubMedCrossRef Linssen M, Mohamed M, Wevers RA, Lefeber DJ, Morava E. Thrombotic complications in patients with PMM2-CDG. Mol Genet Metab. 2013;109(1):107–11. PubMedCrossRef
28.
go back to reference Preston RJS, Rawley O, Gleeson EM, O’Donnell JS. Elucidating the role of carbohydrate determinants in regulating hemostasis: Insights and opportunities. Blood. 2013;121:3801–10. PubMedCrossRef Preston RJS, Rawley O, Gleeson EM, O’Donnell JS. Elucidating the role of carbohydrate determinants in regulating hemostasis: Insights and opportunities. Blood. 2013;121:3801–10. PubMedCrossRef
30.
go back to reference Ivanov I, Matafonov A, Sun MF, Mohammed BM, Cheng Q, Dickeson SK, et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood. 2019;133(10):1152–63. PubMedPubMedCentralCrossRef Ivanov I, Matafonov A, Sun MF, Mohammed BM, Cheng Q, Dickeson SK, et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood. 2019;133(10):1152–63. PubMedPubMedCentralCrossRef
31.
go back to reference Magerl M, Germenis AE, Maas C, Maurer M. Hereditary angioedema with normal C1 inhibitor: update on evaluation and treatment. Immunol Allergy Clin N Am. 2017;37:571–84. CrossRef Magerl M, Germenis AE, Maas C, Maurer M. Hereditary angioedema with normal C1 inhibitor: update on evaluation and treatment. Immunol Allergy Clin N Am. 2017;37:571–84. CrossRef
32.
go back to reference Noelle V, Knuepfer M, Pulzer F, Schuster V, Siekmeyer W, Matthijs G, et al. Unusual presentation of congenital disorder of glycosylation type 1a: congenital persistent thrombocytopenia, hypertrophic cardiomyopathy and hydrops-like aspect due to marked peripheral oedema. Eur J Pediatr. 2005;164(4):223–6. PubMedCrossRef Noelle V, Knuepfer M, Pulzer F, Schuster V, Siekmeyer W, Matthijs G, et al. Unusual presentation of congenital disorder of glycosylation type 1a: congenital persistent thrombocytopenia, hypertrophic cardiomyopathy and hydrops-like aspect due to marked peripheral oedema. Eur J Pediatr. 2005;164(4):223–6. PubMedCrossRef
33.
go back to reference Panigrahy N, Lingappa L, Ramadevi AR, Venkatlakshmi A. Congenital disorder of glycosylation (CDG) presenting as non-immune hydrops fetalis. Indian J Pediatr. 2016;83:359–60. PubMedCrossRef Panigrahy N, Lingappa L, Ramadevi AR, Venkatlakshmi A. Congenital disorder of glycosylation (CDG) presenting as non-immune hydrops fetalis. Indian J Pediatr. 2016;83:359–60. PubMedCrossRef
34.
go back to reference Van De Kamp JM, Lefeber DJ, Ruijter GJG, Steggerda SJ, Den Hollander NS, Willems SM, et al. Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet. 2007;44(4):277–80. PubMedCrossRef Van De Kamp JM, Lefeber DJ, Ruijter GJG, Steggerda SJ, Den Hollander NS, Willems SM, et al. Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet. 2007;44(4):277–80. PubMedCrossRef
35.
go back to reference Edwards M, McKenzie F, O’Callaghan S, Somerset D, Woodford P, Spilsbury J, et al. Prenatal diagnosis of congenital disorder of glycosylation type Ia (CDG-Ia) by cordocentesis and transferrin isoelectric focussing of serum of a 27-week fetus with non-immune hydrops. Prenat Diagn. 2006;26(10):985–8. PubMedCrossRef Edwards M, McKenzie F, O’Callaghan S, Somerset D, Woodford P, Spilsbury J, et al. Prenatal diagnosis of congenital disorder of glycosylation type Ia (CDG-Ia) by cordocentesis and transferrin isoelectric focussing of serum of a 27-week fetus with non-immune hydrops. Prenat Diagn. 2006;26(10):985–8. PubMedCrossRef
36.
go back to reference De Koning TJ, Toet M, Dorland L, De Vries LS, Van Den Berg IET, Duran M, et al. Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis. 1998;21(6):681–2. PubMedCrossRef De Koning TJ, Toet M, Dorland L, De Vries LS, Van Den Berg IET, Duran M, et al. Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis. 1998;21(6):681–2. PubMedCrossRef
Metadata
Title
Factor XII in PMM2-CDG patients: role of N-glycosylation in the secretion and function of the first element of the contact pathway
Authors
Raquel López-Gálvez
María Eugenia de la Morena-Barrio
Alberto López-Lera
Monika Pathak
Antonia Miñano
Mercedes Serrano
Delphine Borgel
Vanessa Roldán
Vicente Vicente
Jonas Emsley
Javier Corral
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2020
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-020-01564-9

Other articles of this Issue 1/2020

Orphanet Journal of Rare Diseases 1/2020 Go to the issue