Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Review

Key issues in Rett syndrome: emotional, behavioural and autonomic dysregulation (EBAD) - a target for clinical trials

Authors: Jatinder Singh, Paramala Santosh

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Complex neurodevelopmental disorders need multi-disciplinary treatment approaches for optimal care. The clinical effectiveness of treatments is limited in patients with rare genetic syndromes with multisystem morbidity. Emotional and behavioural dysregulation is common across many neurodevelopmental disorders. It can manifest in children across multiple diagnostic groups, including those on the autism spectrum and in rare genetic syndromes such as Rett Syndrome (RTT). There is, however a remarkable scarcity in the literature on the impact of the autonomic component on emotional and behavioural regulation in these disorders, and on the longer-term outcomes on disorder burden.
RTT is a debilitating and often life-threatening disorder involving multiple overlapping physiological systems. Autonomic dysregulation otherwise known as dysautonomia is a cardinal feature of RTT characterised by an imbalance between the sympathetic and parasympathetic arms of the autonomic nervous system. Unlocking the autonomic component of emotional and behavioural dysregulation would be central in reducing the impairment seen in patients with RTT. In this vein, Emotional, Behavioural and Autonomic Dysregulation (EBAD) would be a useful construct to target for treatment which could mitigate burden and improve the quality of life of patients.
RTT can be considered as a congenital dysautonomia and because EBAD can give rise to impairments occurring in multiple overlapping physiological systems, understanding these physiological responses arising out of EBAD would be a critical part to consider when planning treatment strategies and improving clinical outcomes in these patients. Biometric guided pharmacological and bio-feedback therapy for the behavioural and emotional aspects of the disorder offers an attracting perspective to manage EBAD in these patients. This can also allow for the stratification of patients into clinical trials and could ultimately help streamline the patient care pathway for optimal outcomes.
The objectives of this review are to emphasise the key issues relating to the management of EBAD in patients with RTT, appraise clinical trials done in RTT from the perspective of autonomic physiology and to discuss the potential of EBAD as a target for clinical trials.
Literature
1.
go back to reference Baguley IJ. The excitatory:inhibitory ratio model (EIR model): an integrative explanation of acute autonomic overactivity syndromes. Med Hypotheses. 2008;70:26–35.PubMedCrossRef Baguley IJ. The excitatory:inhibitory ratio model (EIR model): an integrative explanation of acute autonomic overactivity syndromes. Med Hypotheses. 2008;70:26–35.PubMedCrossRef
2.
go back to reference Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet. 2001;68(3):598–605.PubMedPubMedCentralCrossRef Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet. 2001;68(3):598–605.PubMedPubMedCentralCrossRef
4.
go back to reference Addis L, Ahn JW, Dobson R, Dixit A, Ogilvie CM, et al. Microdeletions of ELP4 are associated with language impairment, autism Spectrum disorder, and mental retardation. Hum Mutat. 2015;36(9):842–50.PubMedCrossRef Addis L, Ahn JW, Dobson R, Dixit A, Ogilvie CM, et al. Microdeletions of ELP4 are associated with language impairment, autism Spectrum disorder, and mental retardation. Hum Mutat. 2015;36(9):842–50.PubMedCrossRef
5.
go back to reference Gkampeta A, Fidani L, Clarimón J, Kalinderi K, Katopodi T, et al. Association of brain-derived neurotrophic factor (BDNF) and elongator protein complex 4 (ELP4) polymorphisms with benign epilepsy with centrotemporal spikes in a Greek population. Epilepsy Res. 2014;108(10):1734–9.PubMedCrossRef Gkampeta A, Fidani L, Clarimón J, Kalinderi K, Katopodi T, et al. Association of brain-derived neurotrophic factor (BDNF) and elongator protein complex 4 (ELP4) polymorphisms with benign epilepsy with centrotemporal spikes in a Greek population. Epilepsy Res. 2014;108(10):1734–9.PubMedCrossRef
6.
go back to reference Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet. 2009;18(3):472–81.PubMedCrossRef Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, et al. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet. 2009;18(3):472–81.PubMedCrossRef
7.
go back to reference Stefanova N, Bucke P, Duerr S, Wenning GK. Multiple system atrophy: an update. Lancet Neurol. 2009;8:1172–8.PubMedCrossRef Stefanova N, Bucke P, Duerr S, Wenning GK. Multiple system atrophy: an update. Lancet Neurol. 2009;8:1172–8.PubMedCrossRef
8.
go back to reference Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci. 2012;313:57–63.PubMedCrossRef Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci. 2012;313:57–63.PubMedCrossRef
9.
go back to reference Vernino S. Autoimmune and paraneoplastic channelopathies. Neurotherapeutics. 2012;4:305–14.CrossRef Vernino S. Autoimmune and paraneoplastic channelopathies. Neurotherapeutics. 2012;4:305–14.CrossRef
10.
11.
go back to reference Baguley IJ, Perkes IE, Fernandez-Ortega JF, Rabinstein AA, Dolce G, Hendricks HT. Consensus Working Group. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J Neurotrauma. 2014;1;31(17):1515–20.CrossRef Baguley IJ, Perkes IE, Fernandez-Ortega JF, Rabinstein AA, Dolce G, Hendricks HT. Consensus Working Group. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J Neurotrauma. 2014;1;31(17):1515–20.CrossRef
12.
go back to reference Julu PO, Witt EI. Assessment of the maturity-related brainstem functions reveals the heterogeneous phenotypes and facilitates clinical management of Rett syndrome. Brain Dev. 2005;27(Suppl. 1):S43–53.PubMedCrossRef Julu PO, Witt EI. Assessment of the maturity-related brainstem functions reveals the heterogeneous phenotypes and facilitates clinical management of Rett syndrome. Brain Dev. 2005;27(Suppl. 1):S43–53.PubMedCrossRef
13.
go back to reference Julu PO, Kerr AM, Apartopoulos F, et al. Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child. 2001;85:29–37.PubMedPubMedCentralCrossRef Julu PO, Kerr AM, Apartopoulos F, et al. Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child. 2001;85:29–37.PubMedPubMedCentralCrossRef
14.
go back to reference Julu PO, Kerr AM, Hansen S, et al. Functional evidence of brain stem immaturity in Rett syndrome. Eur Child Adolesc Psychiatry. 1997;6(Suppl 1):47–54.PubMed Julu PO, Kerr AM, Hansen S, et al. Functional evidence of brain stem immaturity in Rett syndrome. Eur Child Adolesc Psychiatry. 1997;6(Suppl 1):47–54.PubMed
15.
go back to reference Guideri F, Acampa M, Blardi P, et al. Cardiac dysautonomia and serotonin plasma levels in Rett syndrome. Neuropediatrics. 2004;35:36–8.PubMedCrossRef Guideri F, Acampa M, Blardi P, et al. Cardiac dysautonomia and serotonin plasma levels in Rett syndrome. Neuropediatrics. 2004;35:36–8.PubMedCrossRef
16.
go back to reference Paterson DS, Thompson EG, Belliveau RA, et al. Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. J Neuropathol Exp Neurol. 2005;11:1018–27.CrossRef Paterson DS, Thompson EG, Belliveau RA, et al. Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. J Neuropathol Exp Neurol. 2005;11:1018–27.CrossRef
17.
go back to reference Acampa M, Guideri F, Hayek G, et al. Sympathetic overactivity and plasma leptin levels in Rett syndrome. Neurosci Lett. 2008;432:69–72.PubMedCrossRef Acampa M, Guideri F, Hayek G, et al. Sympathetic overactivity and plasma leptin levels in Rett syndrome. Neurosci Lett. 2008;432:69–72.PubMedCrossRef
18.
go back to reference Zhang X, Cui N, Wu Z, et al. Intrinsic membrane properties of locus coeruleus neurons in MECP2-null mice. Am J Physiol Cell Physiol. 2010;298:635–46.CrossRef Zhang X, Cui N, Wu Z, et al. Intrinsic membrane properties of locus coeruleus neurons in MECP2-null mice. Am J Physiol Cell Physiol. 2010;298:635–46.CrossRef
20.
go back to reference Evans JC, Archer HL, Colley JP, et al. Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet. 2005;13:1113–20.PubMedCrossRef Evans JC, Archer HL, Colley JP, et al. Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet. 2005;13:1113–20.PubMedCrossRef
21.
go back to reference Philippe C, Amsallem D, Francannet C, et al. Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females. J Med Genet. 2010;47:59–65.PubMedCrossRef Philippe C, Amsallem D, Francannet C, et al. Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females. J Med Genet. 2010;47:59–65.PubMedCrossRef
22.
go back to reference Percy AK, Lane J, Annese F, et al. When Rett syndrome is due to genes other than MECP2. Transl Sci Rare Dis. 2018;3(1):49–53.PubMedPubMedCentral Percy AK, Lane J, Annese F, et al. When Rett syndrome is due to genes other than MECP2. Transl Sci Rare Dis. 2018;3(1):49–53.PubMedPubMedCentral
23.
go back to reference Katz DM, Bird A, Coenraads M, et al. Rett syndrome: crossing the threshold to clinical translation. Trends Neurosci. 2017;39:100–13.CrossRef Katz DM, Bird A, Coenraads M, et al. Rett syndrome: crossing the threshold to clinical translation. Trends Neurosci. 2017;39:100–13.CrossRef
25.
go back to reference Stefanelli G, Gandaglia A, Costa M, et al. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep. 2016;6:28295.PubMedPubMedCentralCrossRef Stefanelli G, Gandaglia A, Costa M, et al. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep. 2016;6:28295.PubMedPubMedCentralCrossRef
26.
go back to reference Becker A, Zhang P, Allmann L, et al. Poly(ADP-ribosyl)ation of methyl CpG binding protein 2 regulates chromatin structure. J Biol Chem. 2016;291(17):9382.PubMedPubMedCentralCrossRef Becker A, Zhang P, Allmann L, et al. Poly(ADP-ribosyl)ation of methyl CpG binding protein 2 regulates chromatin structure. J Biol Chem. 2016;291(17):9382.PubMedPubMedCentralCrossRef
27.
go back to reference Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.PubMedCrossRef Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.PubMedCrossRef
28.
go back to reference Della Ragione F, Vacca M, Fioriniello S, Pepe G, D’Esposito M. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct Genomics. 2016;15:420–31.PubMed Della Ragione F, Vacca M, Fioriniello S, Pepe G, D’Esposito M. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct Genomics. 2016;15:420–31.PubMed
29.
go back to reference Tillotson R, Selfridge J, Koerner MV, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature. 2017;550(7676):398–401. Tillotson R, Selfridge J, Koerner MV, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature. 2017;550(7676):398–401.
30.
31.
go back to reference Johnson BS, Zhao YT, Fasolino M, et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med. 2017;10:1203–14.CrossRef Johnson BS, Zhao YT, Fasolino M, et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med. 2017;10:1203–14.CrossRef
32.
go back to reference Zylka MJ, Simon JM, Philpot BD. Gene length matters in neurons. Neuron. 2015;286:353–5.CrossRef Zylka MJ, Simon JM, Philpot BD. Gene length matters in neurons. Neuron. 2015;286:353–5.CrossRef
33.
go back to reference Gibson JH, Williamson SL, Arbuckle S, Christodoulou J. X chromosome inactivation patterns in brain in Rett syndrome: implications for the disease phenotype. Brain Development. 2005;27:266–70.PubMedCrossRef Gibson JH, Williamson SL, Arbuckle S, Christodoulou J. X chromosome inactivation patterns in brain in Rett syndrome: implications for the disease phenotype. Brain Development. 2005;27:266–70.PubMedCrossRef
34.
go back to reference Xinhua B, Shengling J, Fuying S, Hong P, Meirong L, Wu XR. (2008). X chromosome inactivation in Rett syndrome and its correlations with MECP2 mutations and phenotype. J Child Neurol. 2008;23:22–5.CrossRef Xinhua B, Shengling J, Fuying S, Hong P, Meirong L, Wu XR. (2008). X chromosome inactivation in Rett syndrome and its correlations with MECP2 mutations and phenotype. J Child Neurol. 2008;23:22–5.CrossRef
35.
go back to reference Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol. 2017;13:37–51.PubMedCrossRef Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol. 2017;13:37–51.PubMedCrossRef
36.
go back to reference Halbach N, Smeets EE, Julu P, et al. Neurophysiology versus clinical genetics in Rett syndrome: a multicenter study. Am J Med Genet A. 2016;170:2301–9.PubMedPubMedCentralCrossRef Halbach N, Smeets EE, Julu P, et al. Neurophysiology versus clinical genetics in Rett syndrome: a multicenter study. Am J Med Genet A. 2016;170:2301–9.PubMedPubMedCentralCrossRef
37.
go back to reference Sansom D, Krishnan VH, Corbett J, Kerr A. Emotional and behavioural aspects of Rett syndrome. Dev Med Child Neurol. 1993;35:340–5. Sansom D, Krishnan VH, Corbett J, Kerr A. Emotional and behavioural aspects of Rett syndrome. Dev Med Child Neurol. 1993;35:340–5.
38.
go back to reference Guideri F, Acampa M. Sudden death and cardiac arrhythmias in Rett syndrome. Pediatr Cardiol. 2005;26:111.PubMedCrossRef Guideri F, Acampa M. Sudden death and cardiac arrhythmias in Rett syndrome. Pediatr Cardiol. 2005;26:111.PubMedCrossRef
39.
go back to reference Kumar A, Jaryal A, Gulati S, et al. Cardiovascular autonomic dysfunction in children and adolescents with Rett syndrome. Pediatr Neurol. 2017;70:61–6.PubMedCrossRef Kumar A, Jaryal A, Gulati S, et al. Cardiovascular autonomic dysfunction in children and adolescents with Rett syndrome. Pediatr Neurol. 2017;70:61–6.PubMedCrossRef
40.
go back to reference Santosh PJ, Bell L, Lievesley K, Singh J, Fiori F. (2016). Paradoxical physiological responses to propranolol in a Rett syndrome patient: a case report. BMC Paediatrics. 2016;29:16–194. Santosh PJ, Bell L, Lievesley K, Singh J, Fiori F. (2016). Paradoxical physiological responses to propranolol in a Rett syndrome patient: a case report. BMC Paediatrics. 2016;29:16–194.
41.
go back to reference Larsson G, Julu PO, Witt EI, et al. Normal reactions to orthostatic stress in Rett syndrome. Res Dev Disabil. 2013;34:1897–905.PubMedCrossRef Larsson G, Julu PO, Witt EI, et al. Normal reactions to orthostatic stress in Rett syndrome. Res Dev Disabil. 2013;34:1897–905.PubMedCrossRef
42.
go back to reference Weese-Mayer DE, Lieske SP, Boothby CM, et al. Autonomic dysregulation in young girls with Rett syndrome during nighttime in-home recordings. Pediatr Pulmonol. 2008;43:1045–60.PubMedCrossRef Weese-Mayer DE, Lieske SP, Boothby CM, et al. Autonomic dysregulation in young girls with Rett syndrome during nighttime in-home recordings. Pediatr Pulmonol. 2008;43:1045–60.PubMedCrossRef
43.
go back to reference Rohdin M, Fernell E, Eriksson M, et al. Disturbances in cardiorespiratory function during day and night in Rett syndrome. Pediatr Neurol. 2007;37:338–44.PubMedCrossRef Rohdin M, Fernell E, Eriksson M, et al. Disturbances in cardiorespiratory function during day and night in Rett syndrome. Pediatr Neurol. 2007;37:338–44.PubMedCrossRef
44.
go back to reference Weese-Mayer DE, Lieske SP, Boothby CM, et al. Autonomic nervous system dysregulation: breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome. Pediatr Res. 2006;60:443–9.PubMedCrossRef Weese-Mayer DE, Lieske SP, Boothby CM, et al. Autonomic nervous system dysregulation: breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome. Pediatr Res. 2006;60:443–9.PubMedCrossRef
45.
go back to reference Guideri F, Acampa M, Matera MR, et al. Echocardiographic evaluation in Rett children with cardiac dysautonomia. J Pediatr Neurol. 2004;2:145–8. Guideri F, Acampa M, Matera MR, et al. Echocardiographic evaluation in Rett children with cardiac dysautonomia. J Pediatr Neurol. 2004;2:145–8.
46.
go back to reference Guideri F, Acampa M, Di Perri T, et al. Progressive cardiac dysautonomia observed in patients affected by classic Rett syndrome and not in the preserved speech variant. J Child Neurol. 2001;16:370–3.PubMedCrossRef Guideri F, Acampa M, Di Perri T, et al. Progressive cardiac dysautonomia observed in patients affected by classic Rett syndrome and not in the preserved speech variant. J Child Neurol. 2001;16:370–3.PubMedCrossRef
47.
go back to reference Kerr AM, Armstrong DD, Prescott RJ, et al. Rett syndrome: analysis of deaths in the British survey. Eur Child Adolesc Psychiatry. 1997;6:71–4.PubMed Kerr AM, Armstrong DD, Prescott RJ, et al. Rett syndrome: analysis of deaths in the British survey. Eur Child Adolesc Psychiatry. 1997;6:71–4.PubMed
48.
go back to reference Hagberg B, Berg M, Steffenburg U. Three decades of sociomedical experiences from west Swedish Rett females 4–60 years of age. Brain and Development. 2001;23:S28–31.PubMedCrossRef Hagberg B, Berg M, Steffenburg U. Three decades of sociomedical experiences from west Swedish Rett females 4–60 years of age. Brain and Development. 2001;23:S28–31.PubMedCrossRef
49.
go back to reference Freilinger M, Bebbington A, Lanator I, et al. Survival with Rett syndrome: comparing Rett's original sample with data from the Australian Rett syndrome database. Dev Med Child Neurol. 2010;52:962–5.PubMedCrossRef Freilinger M, Bebbington A, Lanator I, et al. Survival with Rett syndrome: comparing Rett's original sample with data from the Australian Rett syndrome database. Dev Med Child Neurol. 2010;52:962–5.PubMedCrossRef
50.
go back to reference Kirby RS, Lane JB, Childers J, et al. Longevity in Rett syndrome: analysis of the north American database. J Pediatr. 2010;156(135–138):e131. Kirby RS, Lane JB, Childers J, et al. Longevity in Rett syndrome: analysis of the north American database. J Pediatr. 2010;156(135–138):e131.
51.
go back to reference Anderson A, Wong K, Jacoby P, et al. Twenty years of surveillance in Rett syndrome: what does this tell us? Orphanet J Rare Dis. 2014;19:9–87. Anderson A, Wong K, Jacoby P, et al. Twenty years of surveillance in Rett syndrome: what does this tell us? Orphanet J Rare Dis. 2014;19:9–87.
52.
go back to reference Katz DM, Berger-Sweeney JE, Eubanks JH, et al. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech. 2012;5:733–45.PubMedPubMedCentralCrossRef Katz DM, Berger-Sweeney JE, Eubanks JH, et al. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech. 2012;5:733–45.PubMedPubMedCentralCrossRef
53.
go back to reference Abdala AP, Bissonnette JM, Newman-Tancredi A. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists. Front Physiol. 2014;30:205. Abdala AP, Bissonnette JM, Newman-Tancredi A. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists. Front Physiol. 2014;30:205.
54.
go back to reference Abdala AP, Lioy DT, Garg SK, et al. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome. Am J Respir Cell Mol Biol. 2014;50(6):1031–9.PubMedPubMedCentralCrossRef Abdala AP, Lioy DT, Garg SK, et al. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome. Am J Respir Cell Mol Biol. 2014;50(6):1031–9.PubMedPubMedCentralCrossRef
56.
go back to reference Kida H, Takahashi T, Nakamura Y, et al. Pathogenesis of lethal aspiration pneumonia in Mecp2-null mouse model for Rett syndrome. Sci Rep. 2017;7(1):12032.PubMedPubMedCentralCrossRef Kida H, Takahashi T, Nakamura Y, et al. Pathogenesis of lethal aspiration pneumonia in Mecp2-null mouse model for Rett syndrome. Sci Rep. 2017;7(1):12032.PubMedPubMedCentralCrossRef
57.
go back to reference Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201–16.PubMedCrossRef Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201–16.PubMedCrossRef
58.
go back to reference Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493(1):154–66.PubMedCrossRef Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493(1):154–66.PubMedCrossRef
59.
go back to reference Kober H, Barrett LF, Joseph J, et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage. 2008;42:998–1031.PubMedPubMedCentralCrossRef Kober H, Barrett LF, Joseph J, et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage. 2008;42:998–1031.PubMedPubMedCentralCrossRef
60.
go back to reference McLaughlin KA, Hatzenbuehler ML, Mennin DS, Nolen-Hoeksema S. Emotion dysregulation and adolescent psychopathology: a prospective study. Behav Res Ther. 2011;49:544–54.PubMedPubMedCentralCrossRef McLaughlin KA, Hatzenbuehler ML, Mennin DS, Nolen-Hoeksema S. Emotion dysregulation and adolescent psychopathology: a prospective study. Behav Res Ther. 2011;49:544–54.PubMedPubMedCentralCrossRef
61.
go back to reference Althoff RR, Verhulst FC, Rettew DC, et al. Adult outcomes of childhood dysregulation: a 14-year follow-up study. J Am Acad Child Adolesc Psychiatry. 2010;49:1105–16.PubMedPubMedCentral Althoff RR, Verhulst FC, Rettew DC, et al. Adult outcomes of childhood dysregulation: a 14-year follow-up study. J Am Acad Child Adolesc Psychiatry. 2010;49:1105–16.PubMedPubMedCentral
62.
go back to reference Andersen SL, Lyss PJ, Dumont NL, Teicher MH. Enduring neurochemical effects of early maternal separation on limbic structures. Ann N Y Acad Sci. 1999;877:756–9.PubMedCrossRef Andersen SL, Lyss PJ, Dumont NL, Teicher MH. Enduring neurochemical effects of early maternal separation on limbic structures. Ann N Y Acad Sci. 1999;877:756–9.PubMedCrossRef
63.
go back to reference Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:1–24.CrossRef Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:1–24.CrossRef
64.
go back to reference Shields A, Cicchetti D. Reactive aggression among maltreated children: the contributions of attention and emotion. J Clin Child Psychol. 1998;27:381–95.PubMedCrossRef Shields A, Cicchetti D. Reactive aggression among maltreated children: the contributions of attention and emotion. J Clin Child Psychol. 1998;27:381–95.PubMedCrossRef
65.
go back to reference Ford JD, Fraleigh LA, Albert DB, Connor DF. Child abuse and autonomic nervous system hyporesponsivity among psychiatrically impaired children. Child Abuse Negl. 2010;34:507–15. Ford JD, Fraleigh LA, Albert DB, Connor DF. Child abuse and autonomic nervous system hyporesponsivity among psychiatrically impaired children. Child Abuse Negl. 2010;34:507–15.
66.
go back to reference De Bellis MD. Developmental traumatology: the psychobiological development of maltreated children and its implications for research, treatment, and policy. Dev Psychopathol. 2001;13:539–64.PubMedCrossRef De Bellis MD. Developmental traumatology: the psychobiological development of maltreated children and its implications for research, treatment, and policy. Dev Psychopathol. 2001;13:539–64.PubMedCrossRef
68.
go back to reference Mount RH, Hastings RP, Reilly S, et al. Behavioural and emotional features in Rett syndrome. Disabil. Rehabil. 2001;10;23(3–4):129–38. Mount RH, Hastings RP, Reilly S, et al. Behavioural and emotional features in Rett syndrome. Disabil. Rehabil. 2001;10;23(3–4):129–38.
69.
go back to reference Epstein A, Leonard H, Davis E, et al. Conceptualizing a quality of life framework for girls with Rett syndrome using qualitative methods. Am J Med Genet A. 2016;170(3):645–53.PubMedCrossRef Epstein A, Leonard H, Davis E, et al. Conceptualizing a quality of life framework for girls with Rett syndrome using qualitative methods. Am J Med Genet A. 2016;170(3):645–53.PubMedCrossRef
70.
go back to reference Barnes KV, Coughlin FR, O'Leary HM, et al. Anxiety-like behavior in Rett syndrome: characteristics and assessment by anxiety scales. J Neurodev Disord. 2015;7(1):30.PubMedPubMedCentralCrossRef Barnes KV, Coughlin FR, O'Leary HM, et al. Anxiety-like behavior in Rett syndrome: characteristics and assessment by anxiety scales. J Neurodev Disord. 2015;7(1):30.PubMedPubMedCentralCrossRef
71.
go back to reference Kaufmann WE, Tierney E, Rohde CA, et al. Social impairments in Rett syndrome: characteristics and relationship with clinical severity. J Intellect Disabil Res. 2012;56:233–47.PubMedCrossRef Kaufmann WE, Tierney E, Rohde CA, et al. Social impairments in Rett syndrome: characteristics and relationship with clinical severity. J Intellect Disabil Res. 2012;56:233–47.PubMedCrossRef
72.
go back to reference Wanzek M, Jenson WR, Houlihan D. Recognizing and treating Rett syndrome in schools. Sch Psychol Int. 2012;33:151–66.CrossRef Wanzek M, Jenson WR, Houlihan D. Recognizing and treating Rett syndrome in schools. Sch Psychol Int. 2012;33:151–66.CrossRef
73.
go back to reference Mount RH, Charman T, Hastings RP, et al. (2003) features of autism in rett syndrome and severe mental retardation. J Autism Dev Disord. 2003;33:435–42.PubMedCrossRef Mount RH, Charman T, Hastings RP, et al. (2003) features of autism in rett syndrome and severe mental retardation. J Autism Dev Disord. 2003;33:435–42.PubMedCrossRef
74.
go back to reference Woodyatt GC, Ozanne AE. Communication abilities in a case of Rett syndrome. J Intellect Disabil Res. 1992;36:83–92.PubMedCrossRef Woodyatt GC, Ozanne AE. Communication abilities in a case of Rett syndrome. J Intellect Disabil Res. 1992;36:83–92.PubMedCrossRef
75.
go back to reference Munde V, Vlaskamp C, Ter Haar A. Social-emotional instability in individuals with Rett syndrome: parents' experiences with second stage behaviour. Intellect. Disabil. Res. 2016;60:43–53. Munde V, Vlaskamp C, Ter Haar A. Social-emotional instability in individuals with Rett syndrome: parents' experiences with second stage behaviour. Intellect. Disabil. Res. 2016;60:43–53.
76.
go back to reference Robertson L, Hall SE, Jacoby P, et al. The association between behavior and genotype in Rett syndrome using the Australian Rett syndrome database. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(2):177–83.PubMedPubMedCentralCrossRef Robertson L, Hall SE, Jacoby P, et al. The association between behavior and genotype in Rett syndrome using the Australian Rett syndrome database. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(2):177–83.PubMedPubMedCentralCrossRef
77.
go back to reference Orefice LL, Zimmerman AL, Chirila AM, et al. Peripheral Mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell. 2016;166:299–313.PubMedPubMedCentralCrossRef Orefice LL, Zimmerman AL, Chirila AM, et al. Peripheral Mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell. 2016;166:299–313.PubMedPubMedCentralCrossRef
78.
go back to reference Bhave SA, Uht RM. CpG methylation and the methyl CpG binding protein 2 (MeCP2) are required for restraining corticotropin releasing hormone (CRH) gene expression. Mol Cell Endocrinol. 2017;454:158–64. Bhave SA, Uht RM. CpG methylation and the methyl CpG binding protein 2 (MeCP2) are required for restraining corticotropin releasing hormone (CRH) gene expression. Mol Cell Endocrinol. 2017;454:158–64.
79.
80.
go back to reference FitzGerald PM, Jankovic J, Percy AK. Rett syndrome and associated movement disorders. Mov Disord. 1990;5:195–202.PubMedCrossRef FitzGerald PM, Jankovic J, Percy AK. Rett syndrome and associated movement disorders. Mov Disord. 1990;5:195–202.PubMedCrossRef
81.
go back to reference Mount RH, Charman T, Hastings RP, Reilly S, Cass H. The Rett syndrome behaviour questionnaire (RSBQ): refining the behavioural phenotype of Rett syndrome. J Child Psychol Psychiatry. 2002;43:1099–110.PubMedCrossRef Mount RH, Charman T, Hastings RP, Reilly S, Cass H. The Rett syndrome behaviour questionnaire (RSBQ): refining the behavioural phenotype of Rett syndrome. J Child Psychol Psychiatry. 2002;43:1099–110.PubMedCrossRef
82.
go back to reference Esbensen AJ, Rojahn J, Aman MG, Ruedrich S. Reliability and validity of an assessment instrument for anxiety, depression, and mood among individuals with mental retardation. J Autism Dev Disord. 2003;33:617–29.PubMedCrossRef Esbensen AJ, Rojahn J, Aman MG, Ruedrich S. Reliability and validity of an assessment instrument for anxiety, depression, and mood among individuals with mental retardation. J Autism Dev Disord. 2003;33:617–29.PubMedCrossRef
83.
go back to reference Tarquinio DC, Hou W, Berg, et al. Longitudinal course of epilepsy in Rett syndrome and related disorders. Brain. 2017;140:306–18.PubMedCrossRef Tarquinio DC, Hou W, Berg, et al. Longitudinal course of epilepsy in Rett syndrome and related disorders. Brain. 2017;140:306–18.PubMedCrossRef
84.
go back to reference Neul JL, Fang P, Barrish J, et al. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008;70:1313–21.PubMedPubMedCentralCrossRef Neul JL, Fang P, Barrish J, et al. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008;70:1313–21.PubMedPubMedCentralCrossRef
86.
87.
go back to reference Bergström-Isacsson M, Lagerkvist B, Holck U, Gold C. How facial expressions in a Rett syndrome population are recognised and interpreted by those around them as conveying emotions. Res Dev Disabil. 2013;34(2):788–94.PubMedCrossRef Bergström-Isacsson M, Lagerkvist B, Holck U, Gold C. How facial expressions in a Rett syndrome population are recognised and interpreted by those around them as conveying emotions. Res Dev Disabil. 2013;34(2):788–94.PubMedCrossRef
88.
go back to reference Woodyatt G, Marinac J, Darnell R, Sigafoos J, Halle J. Behaviour state analysis in Rett syndrome: continuous data reliability measurement. Int J Disabil Dev Educ. 2004;51(4):383–400.CrossRef Woodyatt G, Marinac J, Darnell R, Sigafoos J, Halle J. Behaviour state analysis in Rett syndrome: continuous data reliability measurement. Int J Disabil Dev Educ. 2004;51(4):383–400.CrossRef
90.
go back to reference Berntson GG, Bigger JT Jr, Eckberg DL, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–48.PubMedCrossRef Berntson GG, Bigger JT Jr, Eckberg DL, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–48.PubMedCrossRef
91.
go back to reference Singh J, Santosh P. Psychopharmacology of Neurodevelopmental Disorders in Children, in Child and Adolescent Psychiatry: Asian Perspectives. 2017; Edition 1, Springer Nature. pp. 325–362. Singh J, Santosh P. Psychopharmacology of Neurodevelopmental Disorders in Children, in Child and Adolescent Psychiatry: Asian Perspectives. 2017; Edition 1, Springer Nature. pp. 325–362.
92.
go back to reference Santosh PJ, Sagar-Ouriaghli I, Fiori F, Singh J. Using Wearable Sensor Technology to manage EBAD (Emotional, Behavioural and Autonomic Dysregulation) in patients with complex neurodevelopment disorders. Journal of Psychopharmacology. 2017; Poster B11, Abstract Supplement to Issue 31(volume 8):A40–A41. Santosh PJ, Sagar-Ouriaghli I, Fiori F, Singh J. Using Wearable Sensor Technology to manage EBAD (Emotional, Behavioural and Autonomic Dysregulation) in patients with complex neurodevelopment disorders. Journal of Psychopharmacology. 2017; Poster B11, Abstract Supplement to Issue 31(volume 8):A40–A41.
93.
go back to reference Santosh PJ, Bell L, Fiori F, Singh J. Pediatric antipsychotic use and outcomes monitoring. J Child Adolesc Psychopharmacol. 2017;27(6):546–54.PubMedCrossRef Santosh PJ, Bell L, Fiori F, Singh J. Pediatric antipsychotic use and outcomes monitoring. J Child Adolesc Psychopharmacol. 2017;27(6):546–54.PubMedCrossRef
94.
go back to reference Neul JL, Glaze DG, Percy AK, et al. Improving treatment trial outcomes for Rett syndrome: the development of Rett-specific anchors for the clinical global impression scale. J Child Neurol. 2015;30:1743–8.PubMedPubMedCentralCrossRef Neul JL, Glaze DG, Percy AK, et al. Improving treatment trial outcomes for Rett syndrome: the development of Rett-specific anchors for the clinical global impression scale. J Child Neurol. 2015;30:1743–8.PubMedPubMedCentralCrossRef
95.
go back to reference Hampson LV, Whitehead J, Eleftheriou D, et al. Elicitation of expert prior opinion: application to the MYPAN trial in childhood polyarteritis nodosa. PLoS One. 2015;30:10–e0120981. Hampson LV, Whitehead J, Eleftheriou D, et al. Elicitation of expert prior opinion: application to the MYPAN trial in childhood polyarteritis nodosa. PLoS One. 2015;30:10–e0120981.
96.
go back to reference Mackay J, Downs J, Wong K, et al. Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study. J. Neurodev. Disord. 2017;9:15.PubMedPubMedCentralCrossRef Mackay J, Downs J, Wong K, et al. Autonomic breathing abnormalities in Rett syndrome: caregiver perspectives in an international database study. J. Neurodev. Disord. 2017;9:15.PubMedPubMedCentralCrossRef
97.
go back to reference O'Leary HM, Marschik PB, Khwaja OS, et al. Detecting autonomic response to pain in Rett syndrome. Dev Neurorehabil. 2017;20(2):108–14.PubMedCrossRef O'Leary HM, Marschik PB, Khwaja OS, et al. Detecting autonomic response to pain in Rett syndrome. Dev Neurorehabil. 2017;20(2):108–14.PubMedCrossRef
98.
go back to reference Passos IC, Mwangi B, Kapczinski F. Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry. 2016;1:13–5.CrossRef Passos IC, Mwangi B, Kapczinski F. Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry. 2016;1:13–5.CrossRef
99.
100.
go back to reference Budimirovic DB, Berry-Kravis E, Erickson CA, et al. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord. 2017;9:14.PubMedPubMedCentralCrossRef Budimirovic DB, Berry-Kravis E, Erickson CA, et al. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord. 2017;9:14.PubMedPubMedCentralCrossRef
101.
go back to reference Haas RH, Rice MA, Trauner DA, Merritt TA. Therapeutic effects of a ketogenic diet in Rett syndrome. Am J Med Genet Suppl. 1986;1:225–46. Haas RH, Rice MA, Trauner DA, Merritt TA. Therapeutic effects of a ketogenic diet in Rett syndrome. Am J Med Genet Suppl. 1986;1:225–46.
102.
go back to reference Zappella M. A double blind trial of bromocriptine in the Rett syndrome. Brain and Development. 1990;12(1):148–50.PubMedCrossRef Zappella M. A double blind trial of bromocriptine in the Rett syndrome. Brain and Development. 1990;12(1):148–50.PubMedCrossRef
103.
go back to reference Nielsen JB, Lou HC, Andresen J. Biochemical and clinical effects of tyrosine and tryptophan in the Rett syndrome. Brain and Development. 1990;12(1):143–7.PubMedCrossRef Nielsen JB, Lou HC, Andresen J. Biochemical and clinical effects of tyrosine and tryptophan in the Rett syndrome. Brain and Development. 1990;12(1):143–7.PubMedCrossRef
104.
go back to reference Percy AK, Glaze DG, Schultz RJ, et al. Rett syndrome: controlled study of an oral opiate antagonist, naltrexone. Ann Neurol. 1994;35(4):464–70. Percy AK, Glaze DG, Schultz RJ, et al. Rett syndrome: controlled study of an oral opiate antagonist, naltrexone. Ann Neurol. 1994;35(4):464–70.
105.
go back to reference Stenbom Y, Tonnby B, Hagberg B. Lamotrigine in Rett syndrome: treatment experience from a pilot study. Eur Child Adolesc Psychiatry. 1998;7(1):49–52.PubMedCrossRef Stenbom Y, Tonnby B, Hagberg B. Lamotrigine in Rett syndrome: treatment experience from a pilot study. Eur Child Adolesc Psychiatry. 1998;7(1):49–52.PubMedCrossRef
106.
go back to reference McArthur AJ, Budden SS. Sleep dysfunction in Rett syndrome: a trial of exogenous melatonin treatment. Dev Med Child Neurol. 1998;40(3):186–92.PubMedCrossRef McArthur AJ, Budden SS. Sleep dysfunction in Rett syndrome: a trial of exogenous melatonin treatment. Dev Med Child Neurol. 1998;40(3):186–92.PubMedCrossRef
107.
go back to reference Ellaway C, Williams K, Leonard H, Higgins G, Wilcken B, Christodoulou J. Rett syndrome: randomized controlled trial of L-carnitine. J Child Neurol. 1999;14(3):162–7.PubMedCrossRef Ellaway C, Williams K, Leonard H, Higgins G, Wilcken B, Christodoulou J. Rett syndrome: randomized controlled trial of L-carnitine. J Child Neurol. 1999;14(3):162–7.PubMedCrossRef
108.
go back to reference Ellaway CJ, Peat J, Williams K, Leonard H, Christodoulou J. Medium-term open label trial of L-carnitine in Rett syndrome. Brain and Development. 2001;23(Suppl 1):S85–9.PubMedCrossRef Ellaway CJ, Peat J, Williams K, Leonard H, Christodoulou J. Medium-term open label trial of L-carnitine in Rett syndrome. Brain and Development. 2001;23(Suppl 1):S85–9.PubMedCrossRef
109.
go back to reference Gorbachevskaya N, Bashina V, Gratchev V, Iznak A. Cerebrolysin therapy in Rett syndrome: clinical and EEG mapping study. Brain and Development. 2001;23(Suppl 1):S90–3.PubMedCrossRef Gorbachevskaya N, Bashina V, Gratchev V, Iznak A. Cerebrolysin therapy in Rett syndrome: clinical and EEG mapping study. Brain and Development. 2001;23(Suppl 1):S90–3.PubMedCrossRef
110.
go back to reference Guideri F, Acampa M, Hayek Y, Zappella M. Effects of acetyl-L-carnitine on cardiac dysautonomia in Rett syndrome: prevention of sudden death? Paediatr. Cardiol. 2005;26(5):574–7.CrossRef Guideri F, Acampa M, Hayek Y, Zappella M. Effects of acetyl-L-carnitine on cardiac dysautonomia in Rett syndrome: prevention of sudden death? Paediatr. Cardiol. 2005;26(5):574–7.CrossRef
111.
go back to reference Wilfong AA, Schultz RJ. Vagus nerve stimulation for treatment of epilepsy in Rett syndrome. Dev Med Child Neurol. 2006;48(8):683–6.PubMedCrossRef Wilfong AA, Schultz RJ. Vagus nerve stimulation for treatment of epilepsy in Rett syndrome. Dev Med Child Neurol. 2006;48(8):683–6.PubMedCrossRef
112.
113.
go back to reference Temudo T, Rios M, Prior C, et al. Evaluation of CSF neurotransmitters and folate in 25 patients with Rett disorder and effects of treatment. Brain and Development. 2009;31(1):46–51.PubMedCrossRef Temudo T, Rios M, Prior C, et al. Evaluation of CSF neurotransmitters and folate in 25 patients with Rett disorder and effects of treatment. Brain and Development. 2009;31(1):46–51.PubMedCrossRef
114.
go back to reference Leoncini S, De Felice C, Signorini C, et al. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep. 2011;16(4):145–53.PubMedCrossRef Leoncini S, De Felice C, Signorini C, et al. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep. 2011;16(4):145–53.PubMedCrossRef
115.
go back to reference Signorini C, De Felice C, Leoncini S, et al. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin Chim Acta. 2011;412(15–16):1399–406.PubMedCrossRef Signorini C, De Felice C, Leoncini S, et al. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin Chim Acta. 2011;412(15–16):1399–406.PubMedCrossRef
116.
go back to reference Freilinger M, Dunkler D, Lanator I, et al. Effects of creatine supplementation in Rett syndrome: a randomized, placebo-controlled trial. J Dev Behav Pediatr. 2011;32(6):454–60.PubMedCrossRef Freilinger M, Dunkler D, Lanator I, et al. Effects of creatine supplementation in Rett syndrome: a randomized, placebo-controlled trial. J Dev Behav Pediatr. 2011;32(6):454–60.PubMedCrossRef
117.
go back to reference Hagebeuk EE, Koelman JH, Duran M. Clinical and electroencephalographic effects of folinic acid treatment in Rett syndrome patients. J Child Neurol. 2011;26(6):718–23.PubMedCrossRef Hagebeuk EE, Koelman JH, Duran M. Clinical and electroencephalographic effects of folinic acid treatment in Rett syndrome patients. J Child Neurol. 2011;26(6):718–23.PubMedCrossRef
118.
go back to reference Hagebeuk EE, Duran M, Koelman JH. et al. Folinic acid supplementation in Rett syndrome patients does not influence the course of the disease: a randomized study. J. Child Neurol. 2012;27(3):304-309. Hagebeuk EE, Duran M, Koelman JH. et al. Folinic acid supplementation in Rett syndrome patients does not influence the course of the disease: a randomized study. J. Child Neurol. 2012;27(3):304-309.
119.
go back to reference Pini G, Scusa MF, Congiu L. et al. IGF1 as a Potential Treatment for Rett Syndrome: Safety Assessment in Six Rett Patients. Autism Res Treat. 2012;2012:679801. Pini G, Scusa MF, Congiu L. et al. IGF1 as a Potential Treatment for Rett Syndrome: Safety Assessment in Six Rett Patients. Autism Res Treat. 2012;2012:679801.
120.
go back to reference De Felice C, Signorini C, Durand T, et al. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. 2012;7(3):447–58.PubMedPubMedCentralCrossRef De Felice C, Signorini C, Durand T, et al. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. 2012;7(3):447–58.PubMedPubMedCentralCrossRef
121.
go back to reference Hagebeuk EE, Duran M, Abeling NG, et al. S-adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid in Rett syndrome and the effect of folinic acid supplementation. J Inherit Metab Dis. 2013;36(6):967–72.PubMedCrossRef Hagebeuk EE, Duran M, Abeling NG, et al. S-adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid in Rett syndrome and the effect of folinic acid supplementation. J Inherit Metab Dis. 2013;36(6):967–72.PubMedCrossRef
122.
go back to reference Maffei S, De Felice C, Cannarile P, et al. Effects of ω-3 PUFAs supplementation on myocardial function and oxidative stress markers in typical Rett syndrome. Mediat Inflamm. 2014;983178 Maffei S, De Felice C, Cannarile P, et al. Effects of ω-3 PUFAs supplementation on myocardial function and oxidative stress markers in typical Rett syndrome. Mediat Inflamm. 2014;983178
123.
go back to reference Signorini C, De Felice C, Leoncini S, et al. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids. 2014;91(5):183–93.PubMedCrossRef Signorini C, De Felice C, Leoncini S, et al. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids. 2014;91(5):183–93.PubMedCrossRef
124.
go back to reference Khwaja OS, Ho E, Barnes KV, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A. 2014;111(12):4596–601.PubMedPubMedCentralCrossRef Khwaja OS, Ho E, Barnes KV, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A. 2014;111(12):4596–601.PubMedPubMedCentralCrossRef
125.
go back to reference Pini G, Congiu L, Benincasa A, et al. Illness Severity, Social and Cognitive Ability, and EEG Analysis of Ten Patients with Rett Syndrome Treated with Mecasermin (Recombinant Human IGF-1). Autism Res Treat. 2016;5073078 Pini G, Congiu L, Benincasa A, et al. Illness Severity, Social and Cognitive Ability, and EEG Analysis of Ten Patients with Rett Syndrome Treated with Mecasermin (Recombinant Human IGF-1). Autism Res Treat. 2016;5073078
126.
go back to reference Fabio RA, Billeci L, Crifaci G, et al. Cognitive training modifies frequency EEG bands and neuropsychological measures in Rett syndrome. Res Dev Disabil. 2016;53–54:73–85.PubMedCrossRef Fabio RA, Billeci L, Crifaci G, et al. Cognitive training modifies frequency EEG bands and neuropsychological measures in Rett syndrome. Res Dev Disabil. 2016;53–54:73–85.PubMedCrossRef
127.
go back to reference Djukic A, Holtzer R, Shinnar S, et al. Pharmacologic treatment of Rett syndrome with Glatiramer acetate. Pediatr Neurol. 2016;61:51–7.PubMedCrossRef Djukic A, Holtzer R, Shinnar S, et al. Pharmacologic treatment of Rett syndrome with Glatiramer acetate. Pediatr Neurol. 2016;61:51–7.PubMedCrossRef
128.
go back to reference Nissenkorn A, Kidon M, Ben-Zeev B. A potential life-threatening reaction to Glatiramer acetate in Rett syndrome. Pediatr Neurol. 2017;68:40–3.PubMedCrossRef Nissenkorn A, Kidon M, Ben-Zeev B. A potential life-threatening reaction to Glatiramer acetate in Rett syndrome. Pediatr Neurol. 2017;68:40–3.PubMedCrossRef
129.
go back to reference Yuge K, Hara M, Okabe R, et al. Ghrelin improves dystonia and tremor in patients with Rett syndrome: a pilot study. J Neurol Sci. 2017;377:219–23.PubMedCrossRef Yuge K, Hara M, Okabe R, et al. Ghrelin improves dystonia and tremor in patients with Rett syndrome: a pilot study. J Neurol Sci. 2017;377:219–23.PubMedCrossRef
130.
131.
go back to reference Glaze DG, Neul JL, Percy A, et al. A double-blind, randomized, placebo-controlled clinical study of Trofinetide in the treatment of Rett syndrome. Pediatr Neurol. 2017;S0887-8994(17):30405–8. Glaze DG, Neul JL, Percy A, et al. A double-blind, randomized, placebo-controlled clinical study of Trofinetide in the treatment of Rett syndrome. Pediatr Neurol. 2017;S0887-8994(17):30405–8.
132.
go back to reference O'Leary HM, Kaufmann WE, Barnes KV, et al. Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome. Ann Clin Transl Neurol. 2018;5(3):323–32.PubMedPubMedCentralCrossRef O'Leary HM, Kaufmann WE, Barnes KV, et al. Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome. Ann Clin Transl Neurol. 2018;5(3):323–32.PubMedPubMedCentralCrossRef
133.
go back to reference Downs J, Rodger J, Li C, et al. Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial. Orphanet J Rare Dis. 2018;13(1):3.PubMedPubMedCentralCrossRef Downs J, Rodger J, Li C, et al. Environmental enrichment intervention for Rett syndrome: an individually randomised stepped wedge trial. Orphanet J Rare Dis. 2018;13(1):3.PubMedPubMedCentralCrossRef
134.
go back to reference Mancini J, Dubus JC, Jouve E, et al. Effect of desipramine on patients with breathing disorders in RETT syndrome. Ann Clin Transl Neurol. 2017;5(2):118–27.PubMedPubMedCentralCrossRef Mancini J, Dubus JC, Jouve E, et al. Effect of desipramine on patients with breathing disorders in RETT syndrome. Ann Clin Transl Neurol. 2017;5(2):118–27.PubMedPubMedCentralCrossRef
135.
136.
go back to reference Jones RM, Carberry C, Hamo A, Lord C. Placebo-like response in absence of treatment in children with autism. Autism Res. 2017;10(9):1567–72.PubMedCrossRef Jones RM, Carberry C, Hamo A, Lord C. Placebo-like response in absence of treatment in children with autism. Autism Res. 2017;10(9):1567–72.PubMedCrossRef
137.
go back to reference Chassang S, Snowberg E, Seymour B, Bowles C. Accounting for behavior in treatment effects: new applications for blind trials. PLoS One. 2015;10(6):e0127227.PubMedPubMedCentralCrossRef Chassang S, Snowberg E, Seymour B, Bowles C. Accounting for behavior in treatment effects: new applications for blind trials. PLoS One. 2015;10(6):e0127227.PubMedPubMedCentralCrossRef
138.
go back to reference Berry D. Bayesian statistics and the efficiency and ethics of clinical trials. Statistical Sci. 2004;19:175–87.CrossRef Berry D. Bayesian statistics and the efficiency and ethics of clinical trials. Statistical Sci. 2004;19:175–87.CrossRef
139.
go back to reference LeBlanc JJ, DeGregorio G, Centofante E, et al. Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann Neurol. 2015;78(5):775–86.PubMedCrossRef LeBlanc JJ, DeGregorio G, Centofante E, et al. Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann Neurol. 2015;78(5):775–86.PubMedCrossRef
141.
go back to reference Santosh P, Lievesley K, Fiori F, Singh J. Development of the tailored Rett intervention and assessment longitudinal (TRIAL) database and the Rett evaluation of symptoms and treatments (REST) questionnaire. BMJ Open. 2017;7(6):e015342.PubMedPubMedCentralCrossRef Santosh P, Lievesley K, Fiori F, Singh J. Development of the tailored Rett intervention and assessment longitudinal (TRIAL) database and the Rett evaluation of symptoms and treatments (REST) questionnaire. BMJ Open. 2017;7(6):e015342.PubMedPubMedCentralCrossRef
142.
go back to reference Stroud H, Su SC, Hrvatin S, et al. Early-Life Gene Expression in Neurons Modulates Lasting Epigenetic States. Cell. 2017;S0092–8674(17):31141–8. Stroud H, Su SC, Hrvatin S, et al. Early-Life Gene Expression in Neurons Modulates Lasting Epigenetic States. Cell. 2017;S0092–8674(17):31141–8.
143.
go back to reference Latourelle JC, Beste MT, Hadzi TC, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation. Lancet Neurol. 2017;16(11):908–16.PubMedCrossRef Latourelle JC, Beste MT, Hadzi TC, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation. Lancet Neurol. 2017;16(11):908–16.PubMedCrossRef
144.
go back to reference O'Leary HM, Mayor JM, Poon C-S, et al. Classification of respiratory disturbances in Rett Syndrome patients using Restricted Boltzmann Machine. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:442–5.PubMed O'Leary HM, Mayor JM, Poon C-S, et al. Classification of respiratory disturbances in Rett Syndrome patients using Restricted Boltzmann Machine. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:442–5.PubMed
Metadata
Title
Key issues in Rett syndrome: emotional, behavioural and autonomic dysregulation (EBAD) - a target for clinical trials
Authors
Jatinder Singh
Paramala Santosh
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0873-8

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue