Skip to main content
Top
Published in: Chinese Medicine 1/2015

Open Access 01-12-2015 | Research

Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice

Authors: Nurul Elyani Mohamad, Swee Keong Yeap, Kian Lam Lim, Hamidah Mohd Yusof, Boon Kee Beh, Sheau Wei Tan, Wan Yong Ho, Shaiful Adzni Sharifuddin, Anisah Jamaluddin, Kamariah Long, Nik Mohd Afizan Nik Abd Rahman, Noorjahan Banu Alitheen

Published in: Chinese Medicine | Issue 1/2015

Login to get access

Abstract

Background

Pineapple (Ananas comosus) was demonstrated to be hepatoprotective. This study aims to investigate the reversing effects of pineapple vinegar on paracetamol-induced liver damage in murine model.

Methods

Pineapple juice was fermented via anaerobic and aerobic fermentation to produce pineapple vinegar. Male BALB/c mice (n = 70) were separated into 7 treatment groups (n = 10). Pineapple vinegar (0.08 and 2 mL/kg BW) and synthetic vinegar were used to treat paracetamol-induced liver damage in mice. The hepatoprotective effects were determined by serum biochemistry profiles (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and triglyceride (TG)), liver antioxidant levels (ferric-reducing ability plasma (FRAP), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione assays (GSH)) and histopathological examination with hematoxylin and eosin (H&E) staining. The effects were further evaluated by the expression levels of iNOS, NF-κB, and cytochrome P450 2E1 by quantitative real-time PCR and Western blot analyses. Vinegar samples were also tested for in vitro antioxidant (FRAP, 2,2-diphenyl-2-picrylhydrazyl (DPPH), and total phenolic content (TPC)). Soluble phenolic acid contents in the samples were identified by HPLC.

Results

Pineapple vinegar contained 169.67 ± 0.05 μg GAE/mL of TPC, with 862.61 ± 4.38 μg/mL gallic acid as the main component. Oral administration of pineapple vinegar at 2 mL/kg BW reduced serum enzyme biomarker levels, including AST (P = 0.008), ALT (P = 0.006), ALP (P = 0.002), and TG (P = 0.006) after 7 days of paracetamol treatment. Liver antioxidant levels such as hepatic glutathione (P = 0.003), SOD (P < 0.001), lipid peroxidation (P = 0.002) and FRAP (P <0.001) were restored after the treatment. Pineapple vinegar reduced the expressions of iNOS (P = 0.003) and NF-kB (P = 0.003) and the level of NO (P = 0.003) significantly. Pineapple vinegar also downregulated liver cytochrome P450 protein expression.

Conclusions

Oral administration of pineapple vinegar at 0.08 and 2 mL/kg BW reduced serum enzyme biomarker levels, restored liver antioxidant levels, reduced inflammatory factor expressions, and down regulated liver cytochrome P450 protein expression in paracetamol-induced liver damage in mice.
Literature
1.
go back to reference Frayn KN, Arner P, Yki-Järvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006;42:89–103.CrossRefPubMed Frayn KN, Arner P, Yki-Järvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006;42:89–103.CrossRefPubMed
2.
go back to reference Miller LL, Bly CG, Watson ML, Bale WF. The dominant role of the liver in plasma protein synthesis,a direct study of the isolated perfused rat liver with the aid of lysine-ϵ-C14. J Exp Med. 1951;94:431–53.CrossRefPubMedCentralPubMed Miller LL, Bly CG, Watson ML, Bale WF. The dominant role of the liver in plasma protein synthesis,a direct study of the isolated perfused rat liver with the aid of lysine-ϵ-C14. J Exp Med. 1951;94:431–53.CrossRefPubMedCentralPubMed
3.
go back to reference Farrar Jr WE, Corwin LM. The essential role of the liver in detoxification of endotoxin. Ann N Y Acad Sci. 1966;133:668–84.CrossRefPubMed Farrar Jr WE, Corwin LM. The essential role of the liver in detoxification of endotoxin. Ann N Y Acad Sci. 1966;133:668–84.CrossRefPubMed
4.
go back to reference Poli G. Liver damage due to free radicals. Oxford J Med. 1993;49:604–20. Poli G. Liver damage due to free radicals. Oxford J Med. 1993;49:604–20.
6.
go back to reference Bhanwra S, Singh J, Khosla P. Effect of Azadirachta indica (neem) leaf aqueous extracton paracetamol-induced liver damage in rats. Indian J Physiol Pharmacol. 2000;44:64–8.PubMed Bhanwra S, Singh J, Khosla P. Effect of Azadirachta indica (neem) leaf aqueous extracton paracetamol-induced liver damage in rats. Indian J Physiol Pharmacol. 2000;44:64–8.PubMed
7.
go back to reference Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontology. 2014;64:139–53.CrossRef Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontology. 2014;64:139–53.CrossRef
8.
go back to reference Pinsirodom P, Rungcharoen J, Liumminful A. Quality of commercial wine vinegars evaluated on the basis of total polyphenol content and antioxidant properties. Asian J Food Agro-Industry. 2010;3:389–97. Pinsirodom P, Rungcharoen J, Liumminful A. Quality of commercial wine vinegars evaluated on the basis of total polyphenol content and antioxidant properties. Asian J Food Agro-Industry. 2010;3:389–97.
9.
go back to reference Seki T, Morimura S, Tabata S, Tang Y, Shigematsu T, Kida K. Antioxidant activity of vinegar produced from distilled residues of the japanese liquour shochu. J Agric Food Chem. 2008;56:3785–90.CrossRefPubMed Seki T, Morimura S, Tabata S, Tang Y, Shigematsu T, Kida K. Antioxidant activity of vinegar produced from distilled residues of the japanese liquour shochu. J Agric Food Chem. 2008;56:3785–90.CrossRefPubMed
10.
go back to reference Guerrero EDA, Mej’ıas RC, Mar’ın RN, Lovillo MP, Barroso CG. A new FT-IRmethod combined with multivariate analysis for the classification of vinegars from different raw materials and production processes. J Sci Food Agric. 2010;90:712–8.PubMed Guerrero EDA, Mej’ıas RC, Mar’ın RN, Lovillo MP, Barroso CG. A new FT-IRmethod combined with multivariate analysis for the classification of vinegars from different raw materials and production processes. J Sci Food Agric. 2010;90:712–8.PubMed
11.
go back to reference Budak NH, Doguc DK, M. Savas C, Seydim AC, Tas TK, Ciris MI, et al. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. J Agric Food Chem. 2011;59:6638–44.CrossRefPubMed Budak NH, Doguc DK, M. Savas C, Seydim AC, Tas TK, Ciris MI, et al. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. J Agric Food Chem. 2011;59:6638–44.CrossRefPubMed
12.
go back to reference Gu X, Zhao H-L, Sui Y, Guan J, Chan JCN, Tong PCY. White rice vinegar improves pancreatic beta-cell function and fatty liver in streptozotocin-induced diabetic rats. Acta Diabetol. 2012;49:185–91.CrossRefPubMed Gu X, Zhao H-L, Sui Y, Guan J, Chan JCN, Tong PCY. White rice vinegar improves pancreatic beta-cell function and fatty liver in streptozotocin-induced diabetic rats. Acta Diabetol. 2012;49:185–91.CrossRefPubMed
13.
go back to reference Kondo S, Tayama K, Tsukamoto Y, Ikeda K, Yamori Y. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2001;65:2690–4.CrossRefPubMed Kondo S, Tayama K, Tsukamoto Y, Ikeda K, Yamori Y. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2001;65:2690–4.CrossRefPubMed
14.
go back to reference Shimoji Y, Kohno H, Nanda K, Nishikawa Y, Ohigashi H, Uenakai K, et al. Extract of kurosu, a vinegar from unpolished rice, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Nutr Cancer. 2004;49:170–3.CrossRefPubMed Shimoji Y, Kohno H, Nanda K, Nishikawa Y, Ohigashi H, Uenakai K, et al. Extract of kurosu, a vinegar from unpolished rice, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Nutr Cancer. 2004;49:170–3.CrossRefPubMed
15.
go back to reference Fan J, Zhang Y, Chang X, Zhang B, Jiang D, Saito M, et al. Antithrombotic and fibrinolytic activities of methanolic extract of aged sorghum vinegar. J Agric Food Chem. 2009;57:8683–7.CrossRefPubMed Fan J, Zhang Y, Chang X, Zhang B, Jiang D, Saito M, et al. Antithrombotic and fibrinolytic activities of methanolic extract of aged sorghum vinegar. J Agric Food Chem. 2009;57:8683–7.CrossRefPubMed
16.
go back to reference Pinto TMS, Neves ACC, Leao MVP, Jorge AOC. Vinegar as antimicrobial agent for control of Candida spp. in complete denture wearers. J Appl Oral Sci. 2008;16:385–90.CrossRefPubMed Pinto TMS, Neves ACC, Leao MVP, Jorge AOC. Vinegar as antimicrobial agent for control of Candida spp. in complete denture wearers. J Appl Oral Sci. 2008;16:385–90.CrossRefPubMed
17.
go back to reference Xiang J, Zhu W, Li Z, Ling S. Effect of juice and fermented vinegar from Hovenia dulcis peduncles on chronically alcohol-induced liver damage in mice. Food Funct. 2012;3:628–34.CrossRefPubMed Xiang J, Zhu W, Li Z, Ling S. Effect of juice and fermented vinegar from Hovenia dulcis peduncles on chronically alcohol-induced liver damage in mice. Food Funct. 2012;3:628–34.CrossRefPubMed
18.
go back to reference Tochi BN, Wang Z, Xu S-Y, Zhang W. Therapeutic application of pineapple protease(bromelain): a review. Pak J Nutr. 2008;7:513–20.CrossRef Tochi BN, Wang Z, Xu S-Y, Zhang W. Therapeutic application of pineapple protease(bromelain): a review. Pak J Nutr. 2008;7:513–20.CrossRef
19.
go back to reference Mhatre M, Tilak-Jain J, De S, Devasagayam TPA. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: a comparative study. Food Chem Toxicol. 2009;47:2696–702.CrossRefPubMed Mhatre M, Tilak-Jain J, De S, Devasagayam TPA. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: a comparative study. Food Chem Toxicol. 2009;47:2696–702.CrossRefPubMed
20.
go back to reference Jacques DT, Marc KT, Marius A. Biochemical effectiveness in liver detoxication of fresh pineapple (Ananas comosus) with the wistar rats, previously intoxicated by Doliprane. J Cell AnimBiol. 2008;2:031–5. Jacques DT, Marc KT, Marius A. Biochemical effectiveness in liver detoxication of fresh pineapple (Ananas comosus) with the wistar rats, previously intoxicated by Doliprane. J Cell AnimBiol. 2008;2:031–5.
21.
go back to reference Dougnon TJ, Kpodekon TM, Ahissou H, Gbenou J, Loko F, Laleye L. Protective effect of stem pineapple on Wistar rat poisoning with paracetamol. Int J Biol Chem Sci. 2009;3:688–93. Dougnon TJ, Kpodekon TM, Ahissou H, Gbenou J, Loko F, Laleye L. Protective effect of stem pineapple on Wistar rat poisoning with paracetamol. Int J Biol Chem Sci. 2009;3:688–93.
22.
go back to reference Olaleyea MT, Rocha BTJ. Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol. 2008;59:319–27.CrossRef Olaleyea MT, Rocha BTJ. Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol. 2008;59:319–27.CrossRef
23.
go back to reference Moon Y-J, Choi D-S, Oh S-H, Song Y-S, Cha Y-S. Effects of persimmon-vinegar on lipid and carnitine profiles in mice. Food Sci Biotechnol. 2010;19:343–8.CrossRef Moon Y-J, Choi D-S, Oh S-H, Song Y-S, Cha Y-S. Effects of persimmon-vinegar on lipid and carnitine profiles in mice. Food Sci Biotechnol. 2010;19:343–8.CrossRef
24.
go back to reference Yusof HM, Ali N, Yeap SK, Ho WY, Beh BK, Koh SP, et al. Hepatoprotective effect of fermented soybean (nutrient enriched soybean tempeh) against alcohol-induced liver damage in mice. Evid Based Complement Alternat Med. 2013;2013:1–9. Yusof HM, Ali N, Yeap SK, Ho WY, Beh BK, Koh SP, et al. Hepatoprotective effect of fermented soybean (nutrient enriched soybean tempeh) against alcohol-induced liver damage in mice. Evid Based Complement Alternat Med. 2013;2013:1–9.
25.
go back to reference Y-h C, Yang C-m, Chang S-p, Hu M-l. C/EBP beta and C/EBP delta expression is elevated in the early phase of ethanol-induced hepatosteatosis in mice. Acta Pharmacol Sin. 2009;30:1138–43.CrossRef Y-h C, Yang C-m, Chang S-p, Hu M-l. C/EBP beta and C/EBP delta expression is elevated in the early phase of ethanol-induced hepatosteatosis in mice. Acta Pharmacol Sin. 2009;30:1138–43.CrossRef
26.
go back to reference Lee KJ, You HJ, Park SJ, Kim YS, Chung YC, Jeong TC, et al. Hepatoprotective effects of Platycodon grandiflorum on acetaminophen-induced liver damage in mice. Cancer Lett. 2001;174:73–81.CrossRefPubMed Lee KJ, You HJ, Park SJ, Kim YS, Chung YC, Jeong TC, et al. Hepatoprotective effects of Platycodon grandiflorum on acetaminophen-induced liver damage in mice. Cancer Lett. 2001;174:73–81.CrossRefPubMed
27.
go back to reference Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. Hepatoprotective activity of Elephantopus scaber on alcohol-induced liver damage in mice. Evid Based Complement Alternat Med. 2012;2012:1–8. Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. Hepatoprotective activity of Elephantopus scaber on alcohol-induced liver damage in mice. Evid Based Complement Alternat Med. 2012;2012:1–8.
28.
go back to reference Nagavani V, Rao TR. Evaluation of antioxidant potential and identification of polyphenolsby RP-HPLC in Michelia champaca flowers. Adv Biol Res. 2010;4:159–68. Nagavani V, Rao TR. Evaluation of antioxidant potential and identification of polyphenolsby RP-HPLC in Michelia champaca flowers. Adv Biol Res. 2010;4:159–68.
29.
go back to reference Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19:669–75.CrossRef Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19:669–75.CrossRef
30.
go back to reference Basu S, Haldar N, Bhattacharya Sanji BS, Biswas M. Hepatoprotective activity of Litchi chinensis leaves against paracetamol-induced liver damage in rats. Am-Eur J Sci Res. 2012;7:77–81. Basu S, Haldar N, Bhattacharya Sanji BS, Biswas M. Hepatoprotective activity of Litchi chinensis leaves against paracetamol-induced liver damage in rats. Am-Eur J Sci Res. 2012;7:77–81.
31.
go back to reference Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245:194–205.CrossRefPubMed Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245:194–205.CrossRefPubMed
32.
go back to reference Kang H, Koppula S. Hepatoprotective effect of Houttuynia cordata thunb extract against carbon tetrachloride-induced hepatic damage in mice. Indian J Pharm Sci. 2014;76:267–73.PubMedCentralPubMed Kang H, Koppula S. Hepatoprotective effect of Houttuynia cordata thunb extract against carbon tetrachloride-induced hepatic damage in mice. Indian J Pharm Sci. 2014;76:267–73.PubMedCentralPubMed
33.
go back to reference Kim JY, Ok E, Kim YJ, Choi K-S, Kwon O. Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells. Nutr Res Pract. 2013;7:153–9.CrossRefPubMedCentralPubMed Kim JY, Ok E, Kim YJ, Choi K-S, Kwon O. Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells. Nutr Res Pract. 2013;7:153–9.CrossRefPubMedCentralPubMed
34.
go back to reference Kondo T, Kishi M, Fushimi T, Kaga T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric Food Chem. 2009;57:5982–6.CrossRefPubMed Kondo T, Kishi M, Fushimi T, Kaga T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J Agric Food Chem. 2009;57:5982–6.CrossRefPubMed
35.
go back to reference Vitaglione P, Morisco F, Caporaso N, Fogliano V. Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr. 2004;44:575–86.CrossRefPubMed Vitaglione P, Morisco F, Caporaso N, Fogliano V. Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr. 2004;44:575–86.CrossRefPubMed
36.
go back to reference Jeong C-H, Choi GN, Kim JH, Kwak JH, Kang S-T, Choi S-G, et al. In vitro antioxidant properties and phenolic composition of korean commercial vinegars. Food Sci Biotechnol. 2009;18:1258–a1262. Jeong C-H, Choi GN, Kim JH, Kwak JH, Kang S-T, Choi S-G, et al. In vitro antioxidant properties and phenolic composition of korean commercial vinegars. Food Sci Biotechnol. 2009;18:1258–a1262.
37.
go back to reference Cheedella HK, Alluri R, Ghanta KM. Hepatoprotective and antioxidant effect of Ecbolium viride(Forssk.) Alston roots against paracetamol-induced hepatotoxicity in albino wistar rats. J Pharm Res. 2013;7:496–501.CrossRef Cheedella HK, Alluri R, Ghanta KM. Hepatoprotective and antioxidant effect of Ecbolium viride(Forssk.) Alston roots against paracetamol-induced hepatotoxicity in albino wistar rats. J Pharm Res. 2013;7:496–501.CrossRef
38.
go back to reference Sunil C, Duraipandiyan V, Ignacimuthu S, Al-Dhabib NA. Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food Chem. 2013;139:860–5.CrossRefPubMed Sunil C, Duraipandiyan V, Ignacimuthu S, Al-Dhabib NA. Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food Chem. 2013;139:860–5.CrossRefPubMed
39.
go back to reference Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by lipopolysaccharide. Cell Signal. 2011;23:425–35.CrossRefPubMed Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by lipopolysaccharide. Cell Signal. 2011;23:425–35.CrossRefPubMed
40.
41.
go back to reference Ha K-T, Yoon S-J, Choi D-Y, Kim D-W, Kim J-K, Kim C-H. Protective effect of Lycium chinense fruit on carbon tetrachloride-induced hepatotoxicity. J Ethnopharmacol. 2005;96:529–35.CrossRefPubMed Ha K-T, Yoon S-J, Choi D-Y, Kim D-W, Kim J-K, Kim C-H. Protective effect of Lycium chinense fruit on carbon tetrachloride-induced hepatotoxicity. J Ethnopharmacol. 2005;96:529–35.CrossRefPubMed
42.
go back to reference Lee KJ, Woo E-R, Choi CY, Shin DW, Lee DG, You HJ, et al. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 2004;74:1051–64.CrossRefPubMed Lee KJ, Woo E-R, Choi CY, Shin DW, Lee DG, You HJ, et al. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 2004;74:1051–64.CrossRefPubMed
43.
go back to reference Hwang J, Chang Y-H, Park JH, Kim SY, Chung H, Shim E, et al. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats. Lipids Health Dis. 2011;10:1–8.CrossRef Hwang J, Chang Y-H, Park JH, Kim SY, Chung H, Shim E, et al. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats. Lipids Health Dis. 2011;10:1–8.CrossRef
44.
go back to reference Jeong SC, Kim SM, Jeong YT, Song CH. Hepatoprotective effect of water extract from Chrysanthemum indicum L.flower. Chin Med. 2013;8:1–8.CrossRef Jeong SC, Kim SM, Jeong YT, Song CH. Hepatoprotective effect of water extract from Chrysanthemum indicum L.flower. Chin Med. 2013;8:1–8.CrossRef
45.
go back to reference El-Beshbishy HA. Hepatoprotective effect of green tea (Camellia sinensis) extract against tamoxifen-induced liver injury in rats. J Biochem Mol Biol. 2005;38:563.CrossRefPubMed El-Beshbishy HA. Hepatoprotective effect of green tea (Camellia sinensis) extract against tamoxifen-induced liver injury in rats. J Biochem Mol Biol. 2005;38:563.CrossRefPubMed
46.
go back to reference Zhao J, Chen H, Li Y. Protective effect of bicyclol on acute alcohol-induced liver injury in mice. Eur J Pharmacol. 2008;586:322–31.CrossRefPubMed Zhao J, Chen H, Li Y. Protective effect of bicyclol on acute alcohol-induced liver injury in mice. Eur J Pharmacol. 2008;586:322–31.CrossRefPubMed
47.
go back to reference Hossaina MA, Rahman SMM. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int. 2011;44:672–6.CrossRef Hossaina MA, Rahman SMM. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int. 2011;44:672–6.CrossRef
48.
go back to reference Martinez MC, Afonso SG, Buzaleh AM. Batlle A: Protective action of antioxidants on hepatic damage induced by griseofulvin. Sci World J. 2014;2014:1–8. Martinez MC, Afonso SG, Buzaleh AM. Batlle A: Protective action of antioxidants on hepatic damage induced by griseofulvin. Sci World J. 2014;2014:1–8.
49.
go back to reference Hunaefia D, Akumo DN, Smetanska I. Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnol. 2013;27:66–85.CrossRef Hunaefia D, Akumo DN, Smetanska I. Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnol. 2013;27:66–85.CrossRef
50.
go back to reference Martin LJ, Matar C. Increase of antioxidant capacity of the lowbush blueberry (Vaccinium angustifolium) during fermentation by a novel bacterium from the fruit microflora. J Sci Food Agric. 2005;85:1477–84.CrossRef Martin LJ, Matar C. Increase of antioxidant capacity of the lowbush blueberry (Vaccinium angustifolium) during fermentation by a novel bacterium from the fruit microflora. J Sci Food Agric. 2005;85:1477–84.CrossRef
51.
go back to reference Tung Y-T, Wu J-H, Huang C-C, Peng H-C, Chen Y-L, Yang S-C, et al. Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem Toxicol. 2009;47:1385–92.CrossRefPubMed Tung Y-T, Wu J-H, Huang C-C, Peng H-C, Chen Y-L, Yang S-C, et al. Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem Toxicol. 2009;47:1385–92.CrossRefPubMed
52.
go back to reference Itoh A, Isoda K, Kondoh M, Kawase M, Watari A, Kobayashi M, et al. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol Pharm Bull. 2010;33:983–7.CrossRefPubMed Itoh A, Isoda K, Kondoh M, Kawase M, Watari A, Kobayashi M, et al. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol Pharm Bull. 2010;33:983–7.CrossRefPubMed
53.
go back to reference Shin D-S, Kim KW, Chung HY, Yoon S, Moon J-O. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharm Res. 2013;36:608–18.CrossRefPubMed Shin D-S, Kim KW, Chung HY, Yoon S, Moon J-O. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharm Res. 2013;36:608–18.CrossRefPubMed
54.
go back to reference Yanga S-Y, Honga C-O, b GPL, Kimc C-T, Lee K-W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem Toxicol. 2013;55:92–9.CrossRef Yanga S-Y, Honga C-O, b GPL, Kimc C-T, Lee K-W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem Toxicol. 2013;55:92–9.CrossRef
Metadata
Title
Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice
Authors
Nurul Elyani Mohamad
Swee Keong Yeap
Kian Lam Lim
Hamidah Mohd Yusof
Boon Kee Beh
Sheau Wei Tan
Wan Yong Ho
Shaiful Adzni Sharifuddin
Anisah Jamaluddin
Kamariah Long
Nik Mohd Afizan Nik Abd Rahman
Noorjahan Banu Alitheen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2015
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-015-0030-4

Other articles of this Issue 1/2015

Chinese Medicine 1/2015 Go to the issue