Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2021

Open Access 01-12-2021 | Heart Surgery | Research article

Effect of ventilation strategy during cardiopulmonary bypass on postoperative pulmonary complications after cardiac surgery: a randomized clinical trial

Authors: Meng-Qiu Zhang, Yu-Qi Liao, Hong Yu, Xue-Fei Li, Wei Shi, Wei-Wei Jing, Zai-Li Wang, Yi Xu, Hai Yu

Published in: Journal of Cardiothoracic Surgery | Issue 1/2021

Login to get access

Abstract

Background

To determine whether maintaining ventilation during cardiopulmonary bypass (CPB) with a different fraction of inspired oxygen (FiO2) had an impact on the occurrence of postoperative pulmonary complications (PPCs).

Methods

A total of 413 adult patients undergoing elective cardiac surgery with CPB were randomly assigned into three groups: 138 in the NoV group (received no mechanical ventilation during CPB), 138 in the LOV group (received a tidal volume (VT) of 3–4 ml/kg of ideal body weight with the respiratory rate of 10–12 bpm, and the positive end-expiratory pressure of 5–8 cmH2O during CPB; the FiO2 was 30%), and 137 in the HOV group (received the same ventilation parameters settings as the LOV group while the FiO2 was 80%).

Results

The primary outcomes were the incidence and severity of PPCs during hospitalization. The composite incidence of PPCs did not significantly differ between the NoV (63%), LOV (49%) and HOV (57%) groups (P = 0.069). And there was also no difference regarding the incidence of PPCs between the non-ventilation (NoV) and ventilation (the combination of LOV and HOV) groups. The LOV group was observed a lower proportion of moderate and severe pulmonary complications (grade ≥ 3) than the NoV group (23.1% vs. 44.2%, P = 0.001).

Conclusion

Maintaining ventilation during CPB did not reduce the incidence of PPCs in patients undergoing cardiac surgery.
Trial registration: Chinese Clinical Trial Registry ChiCTR1800015261. Prospectively registered 19 March 2018. http://​www.​chictr.​org.​cn/​showproj.​aspx?​proj=​25982
Appendix
Available only for authorised users
Literature
1.
go back to reference Circulation CSoE. White book of Chinese cardiovascular surgery and extracorporeal circulation in 2019. Chin J Extracorporeal Circ. 2020;18(4):193–6. Circulation CSoE. White book of Chinese cardiovascular surgery and extracorporeal circulation in 2019. Chin J Extracorporeal Circ. 2020;18(4):193–6.
2.
go back to reference Lagier D, Fischer F, Fornier W, et al. Effect of open-lung vs conventional perioperative ventilation strategies on postoperative pulmonary complications after on-pump cardiac surgery: the PROVECS randomized clinical trial. Intensive Care Med. 2019;45:1401–12.CrossRef Lagier D, Fischer F, Fornier W, et al. Effect of open-lung vs conventional perioperative ventilation strategies on postoperative pulmonary complications after on-pump cardiac surgery: the PROVECS randomized clinical trial. Intensive Care Med. 2019;45:1401–12.CrossRef
3.
go back to reference Serpa Neto A, Hemmes SN, Barbas CS, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRef Serpa Neto A, Hemmes SN, Barbas CS, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRef
4.
go back to reference Mathis MR, Duggal NM, Likosky DS, et al. Intraoperative mechanical ventilation and postoperative pulmonary complications after cardiac surgery. Anesthesiology. 2019;131:1046–62.CrossRef Mathis MR, Duggal NM, Likosky DS, et al. Intraoperative mechanical ventilation and postoperative pulmonary complications after cardiac surgery. Anesthesiology. 2019;131:1046–62.CrossRef
5.
go back to reference Wang YC, Huang CH, Tu YK. Effects of positive airway pressure and mechanical ventilation of the lungs during cardiopulmonary bypass on pulmonary adverse events after cardiac surgery: a systematic review and meta-analysis. J Cardiothoracic Vascular Anesth. 2018;32:748–59.CrossRef Wang YC, Huang CH, Tu YK. Effects of positive airway pressure and mechanical ventilation of the lungs during cardiopulmonary bypass on pulmonary adverse events after cardiac surgery: a systematic review and meta-analysis. J Cardiothoracic Vascular Anesth. 2018;32:748–59.CrossRef
6.
go back to reference Bhatia M, Kidd B, Kumar PA. Pro: mechanical ventilation should be continued during cardiopulmonary bypass. J Cardiothoracic Vascular Anesth. 2018;32:1998–2000.CrossRef Bhatia M, Kidd B, Kumar PA. Pro: mechanical ventilation should be continued during cardiopulmonary bypass. J Cardiothoracic Vascular Anesth. 2018;32:1998–2000.CrossRef
7.
go back to reference Dryer C, Tolpin D, Anton J. Con: mechanical ventilation during cardiopulmonary bypass does not improve outcomes after cardiac surgery. J Cardiothoracic Vascular Anesth. 2018;32:2001–4.CrossRef Dryer C, Tolpin D, Anton J. Con: mechanical ventilation during cardiopulmonary bypass does not improve outcomes after cardiac surgery. J Cardiothoracic Vascular Anesth. 2018;32:2001–4.CrossRef
8.
go back to reference Chi D, Chen C, Shi Y, et al. Ventilation during cardiopulmonary bypass for prevention of respiratory insufficiency: a meta-analysis of randomized controlled trials. Medicine. 2017;96:e6454. Chi D, Chen C, Shi Y, et al. Ventilation during cardiopulmonary bypass for prevention of respiratory insufficiency: a meta-analysis of randomized controlled trials. Medicine. 2017;96:e6454.
9.
go back to reference Wahba A, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardio-thoracic Surg. 2020;57(2):210–51. Wahba A, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardio-thoracic Surg. 2020;57(2):210–51.
10.
go back to reference Heinrichs J, Grocott HP. Pro: hyperoxia should be used during cardiac surgery. J Cardiothoracic Vascular Anesth. 2019;33:2070–4.CrossRef Heinrichs J, Grocott HP. Pro: hyperoxia should be used during cardiac surgery. J Cardiothoracic Vascular Anesth. 2019;33:2070–4.CrossRef
11.
go back to reference Roberts SM, Cios TJ. Con: hyperoxia should not be used routinely in the management of cardiopulmonary bypass. J Cardiothoracic Vascular Anesth. 2019;33:2075–8.CrossRef Roberts SM, Cios TJ. Con: hyperoxia should not be used routinely in the management of cardiopulmonary bypass. J Cardiothoracic Vascular Anesth. 2019;33:2075–8.CrossRef
12.
go back to reference Zhang MQ, Liao YQ, Yu H, et al. Ventilation strategies with different inhaled Oxygen conceNTration during CardioPulmonary Bypass in cardiac surgery (VONTCPB): study protocol for a randomized controlled trial. Trials. 2019;20:254.CrossRef Zhang MQ, Liao YQ, Yu H, et al. Ventilation strategies with different inhaled Oxygen conceNTration during CardioPulmonary Bypass in cardiac surgery (VONTCPB): study protocol for a randomized controlled trial. Trials. 2019;20:254.CrossRef
13.
go back to reference Bignami E, Guarnieri M, Saglietti F, et al. Mechanical ventilation during cardiopulmonary bypass. J Cardiothoracic Vascular Anesth. 2016;30:1668–75.CrossRef Bignami E, Guarnieri M, Saglietti F, et al. Mechanical ventilation during cardiopulmonary bypass. J Cardiothoracic Vascular Anesth. 2016;30:1668–75.CrossRef
14.
go back to reference Costa Leme A, Hajjar LA, Volpe MS, et al. Effect of intensive vs moderate alveolar recruitment strategies added to lung-protective ventilation on postoperative pulmonary complications: a randomized clinical trial. JAMA. 2017;317:1422–32.CrossRef Costa Leme A, Hajjar LA, Volpe MS, et al. Effect of intensive vs moderate alveolar recruitment strategies added to lung-protective ventilation on postoperative pulmonary complications: a randomized clinical trial. JAMA. 2017;317:1422–32.CrossRef
15.
16.
go back to reference Fischer MO, Courteille B, Guinot PG, et al. Perioperative Ventilatory Management in Cardiac Surgery: A French Nationwide Survey. Medicine 2016;95:e2655. Fischer MO, Courteille B, Guinot PG, et al. Perioperative Ventilatory Management in Cardiac Surgery: A French Nationwide Survey. Medicine 2016;95:e2655.
17.
go back to reference Tanner TG, Colvin MO. Pulmonary complications of cardiac surgery. Lung. 2020;198:889–96.CrossRef Tanner TG, Colvin MO. Pulmonary complications of cardiac surgery. Lung. 2020;198:889–96.CrossRef
18.
go back to reference Beer L, Warszawska JM, Schenk P, et al. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation. J Surg Res. 2015;195:294–302.CrossRef Beer L, Warszawska JM, Schenk P, et al. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation. J Surg Res. 2015;195:294–302.CrossRef
19.
go back to reference Nguyen LS, Estagnasie P, Merzoug M, et al. Low-tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass in heart surgery (MECANO): a randomized controlled trial. Chest 2020. Nguyen LS, Estagnasie P, Merzoug M, et al. Low-tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass in heart surgery (MECANO): a randomized controlled trial. Chest 2020.
20.
go back to reference Hussain NS, Metry AA, Nakhla GM, Wahba RM, Ragaei MZ, Bestarous JN. Comparative study between different modes of ventilation during cardiopulmonary bypass and its effect on postoperative pulmonary dysfunction. Anesth Essays Res. 2019;13:236–42.CrossRef Hussain NS, Metry AA, Nakhla GM, Wahba RM, Ragaei MZ, Bestarous JN. Comparative study between different modes of ventilation during cardiopulmonary bypass and its effect on postoperative pulmonary dysfunction. Anesth Essays Res. 2019;13:236–42.CrossRef
21.
go back to reference Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anesth. 2019;123:898–913.CrossRef Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anesth. 2019;123:898–913.CrossRef
Metadata
Title
Effect of ventilation strategy during cardiopulmonary bypass on postoperative pulmonary complications after cardiac surgery: a randomized clinical trial
Authors
Meng-Qiu Zhang
Yu-Qi Liao
Hong Yu
Xue-Fei Li
Wei Shi
Wei-Wei Jing
Zai-Li Wang
Yi Xu
Hai Yu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2021
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-021-01699-1

Other articles of this Issue 1/2021

Journal of Cardiothoracic Surgery 1/2021 Go to the issue