Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2022

Open Access 01-12-2022 | Research article

TGFβ1-transfected tendon stem cells promote tendon fibrosis

Authors: Hong-Bin Yu, Jing Xiong, Hui-Zhen Zhang, Qin Chen, Xu-Yong Xie

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2022

Login to get access

Abstract

Background

In aged people, tendon injuries frequently occur during sporting and daily activities. In clinical practice, typical physiotherapeutic, pharmacotherapeutic, and surgical techniques do not result in the full recovery of injured tendons, which may lead to chronic degenerative disease.

Methods

We first isolated tendon stem cells (TSCs) from rats and transfected them with the TGFβ1 gene, resulting in TGFβ1-TSCs. The proliferation of TSCs was detected using the Cell Counting Kit 8, and TSCs were identified by immunofluorescence analysis and differentiation capacity analysis. Aggrecan, COL2A1, alpha smooth muscle actin (α-SMA), and p-Smad2 expression levels were detected using western blotting and quantitative reverse transcription polymerase chain reaction. Additionally, a tendon injury model was generated to explore the effect of TGFβ1 on the repair of the tendon by TSCs.

Results

Compared with fibrinogen treatment, TSC + fibrinogen or TGFβ1-TSC + fibrinogen treatment significantly promoted the fibrosis of injured tendons, as evidenced by histological analyses, with TGFβ1-TSC + fibrinogen having a greater effect than TSC + fibrinogen. In TGFβ1-TSCs, increased expression levels of aggrecan and COL2A1 indicated that TGFβ1 signaling induced chondrogenic differentiation. Meanwhile, the increased collagen and α-SMA protein levels indicated that TGFβ1 promoted fibrogenesis. Additionally, TGFβ1 stimulated the production of phosphorylated Smad2 in TSCs, which suggested that the chondrogenic and fibrogenic differentiation of TSCs, as well as tissue regeneration, may be associated with the TGFβ1/Smad2 pathway.

Conclusion

TGFβ1-TSC therapy may be a candidate for effective tendon fibrosis.
Literature
1.
go back to reference Lantto I, Heikkinen J, Flinkkilä T, Ohtonen P, Leppilahti J. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports. 2015;25(1):e133-8.PubMedCrossRef Lantto I, Heikkinen J, Flinkkilä T, Ohtonen P, Leppilahti J. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports. 2015;25(1):e133-8.PubMedCrossRef
2.
go back to reference Zhou B, Zhou Y, Tang K. An overview of structure, mechanical properties, and treatment for age-related tendinopathy. J Nutr Health Aging. 2014;18(4):441–8.PubMedCrossRef Zhou B, Zhou Y, Tang K. An overview of structure, mechanical properties, and treatment for age-related tendinopathy. J Nutr Health Aging. 2014;18(4):441–8.PubMedCrossRef
3.
go back to reference Mayor RB. Treatment of athletic tendonopathy. Conn Med. 2012;76(8):471–5.PubMed Mayor RB. Treatment of athletic tendonopathy. Conn Med. 2012;76(8):471–5.PubMed
5.
go back to reference Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD. Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies—Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports. 2000;10(1):2–11.PubMedCrossRef Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD. Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies—Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports. 2000;10(1):2–11.PubMedCrossRef
6.
go back to reference Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem cell therapy for tendon regeneration: current status and future directions. Adv Exp Med Biol. 2019;1084:61–93.PubMedCrossRef Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem cell therapy for tendon regeneration: current status and future directions. Adv Exp Med Biol. 2019;1084:61–93.PubMedCrossRef
7.
go back to reference Howell K, Chien C, Bell R, Laudier D, Tufa SF, Keene DR, et al. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep. 2017;7:45238.PubMedPubMedCentralCrossRef Howell K, Chien C, Bell R, Laudier D, Tufa SF, Keene DR, et al. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep. 2017;7:45238.PubMedPubMedCentralCrossRef
8.
go back to reference Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol. 2015;11(4):223–33.PubMedCrossRef Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol. 2015;11(4):223–33.PubMedCrossRef
9.
go back to reference Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39.PubMedCrossRef Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39.PubMedCrossRef
10.
go back to reference Andia I, Maffulli N. New biotechnologies for musculoskeletal injuries. Surg J R Coll Surg Edinb Irel. 2019;17(4):244–55. Andia I, Maffulli N. New biotechnologies for musculoskeletal injuries. Surg J R Coll Surg Edinb Irel. 2019;17(4):244–55.
11.
go back to reference Lui PP. (2015) Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning Adv Appl. 2015;8:163–74.CrossRef Lui PP. (2015) Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning Adv Appl. 2015;8:163–74.CrossRef
12.
go back to reference Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24–32.PubMedCrossRef Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24–32.PubMedCrossRef
13.
go back to reference Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem. 2014;289(8):4585–93.PubMedCrossRef Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem. 2014;289(8):4585–93.PubMedCrossRef
14.
go back to reference Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.PubMedCrossRef Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.PubMedCrossRef
15.
go back to reference Yang Z, Cao H, Gao S, Yang M, Lyu J, Tang K. Effect of tendon stem cells in chitosan/β-glycerophosphate/collagen hydrogel on achilles tendon healing in a rat model. Med Sci Monitor Int Med J Exp Clin Res. 2017;23:4633–43. Yang Z, Cao H, Gao S, Yang M, Lyu J, Tang K. Effect of tendon stem cells in chitosan/β-glycerophosphate/collagen hydrogel on achilles tendon healing in a rat model. Med Sci Monitor Int Med J Exp Clin Res. 2017;23:4633–43.
16.
go back to reference Ni M, Lui PP, Rui YF, Lee YW, Lee YW, Tan Q, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res Off Publ Orthop Res Soc. 2012;30(4):613–9.CrossRef Ni M, Lui PP, Rui YF, Lee YW, Lee YW, Tan Q, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res Off Publ Orthop Res Soc. 2012;30(4):613–9.CrossRef
17.
go back to reference Zhang M, Liu H, Cui Q, Han P, Yang S, Shi M, et al. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res Ther. 2020;11(1):402.PubMedPubMedCentralCrossRef Zhang M, Liu H, Cui Q, Han P, Yang S, Shi M, et al. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res Ther. 2020;11(1):402.PubMedPubMedCentralCrossRef
18.
go back to reference Govoni M, Berardi AC, Muscari C, Campardelli R, Bonafè F, Guarnieri C, et al. (*) An engineered multiphase three-dimensional microenvironment to ensure the controlled delivery of cyclic strain and human growth differentiation factor 5 for the tenogenic commitment of human bone marrow mesenchymal stem cells. Tissue Eng Part A. 2017;23(15–16):811–22.PubMedCrossRef Govoni M, Berardi AC, Muscari C, Campardelli R, Bonafè F, Guarnieri C, et al. (*) An engineered multiphase three-dimensional microenvironment to ensure the controlled delivery of cyclic strain and human growth differentiation factor 5 for the tenogenic commitment of human bone marrow mesenchymal stem cells. Tissue Eng Part A. 2017;23(15–16):811–22.PubMedCrossRef
19.
go back to reference Giai Via A, McCarthy MB, de Girolamo L, Ragni E, Oliva F, Maffulli N. Making them commit: strategies to influence phenotypic differentiation in mesenchymal stem cells. Sports Med Arthrosc Rev. 2018;26(2):64–9.PubMedCrossRef Giai Via A, McCarthy MB, de Girolamo L, Ragni E, Oliva F, Maffulli N. Making them commit: strategies to influence phenotypic differentiation in mesenchymal stem cells. Sports Med Arthrosc Rev. 2018;26(2):64–9.PubMedCrossRef
20.
go back to reference Gonçalves AI, Rodrigues MT, Lee SJ, Atala A, Yoo JJ, Reis RL, et al. Understanding the role of growth factors in modulating stem cell tenogenesis. PloS One. 2013;8(12):e83734.PubMedPubMedCentralCrossRef Gonçalves AI, Rodrigues MT, Lee SJ, Atala A, Yoo JJ, Reis RL, et al. Understanding the role of growth factors in modulating stem cell tenogenesis. PloS One. 2013;8(12):e83734.PubMedPubMedCentralCrossRef
21.
go back to reference James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg. 2008;33(1):102–12.CrossRef James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg. 2008;33(1):102–12.CrossRef
22.
go back to reference Bell R, Taub P, Cagle P, Flatow EL, Andarawis-Puri N. Development of a mouse model of supraspinatus tendon insertion site healing. J Orthop Res Off Publ Orthop Res Soc. 2015;33(1):25–32.CrossRef Bell R, Taub P, Cagle P, Flatow EL, Andarawis-Puri N. Development of a mouse model of supraspinatus tendon insertion site healing. J Orthop Res Off Publ Orthop Res Soc. 2015;33(1):25–32.CrossRef
23.
go back to reference Cheng MT, Liu CL, Chen TH, Lee OK. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng Part A. 2010;16(7):2237–53.PubMedCrossRef Cheng MT, Liu CL, Chen TH, Lee OK. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng Part A. 2010;16(7):2237–53.PubMedCrossRef
24.
go back to reference Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg. 2002;27(4):615–20.CrossRef Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg. 2002;27(4):615–20.CrossRef
25.
go back to reference Li J, Hu L, Liu Y, Huang L, Mu Y, Cai X, et al. DDX19A senses viral RNA and mediates NLRP3-dependent inflammasome activation. J Immunol (Baltimore, Md:1950). 2015;195(12):5732–49.CrossRef Li J, Hu L, Liu Y, Huang L, Mu Y, Cai X, et al. DDX19A senses viral RNA and mediates NLRP3-dependent inflammasome activation. J Immunol (Baltimore, Md:1950). 2015;195(12):5732–49.CrossRef
26.
go back to reference Zhang C, Zhang E, Yang L, Tu W, Lin J, Yuan C, et al. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials. 2018;172:66–82.PubMedCrossRef Zhang C, Zhang E, Yang L, Tu W, Lin J, Yuan C, et al. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials. 2018;172:66–82.PubMedCrossRef
27.
go back to reference Wang D, Pun CCM, Huang S, Tang TCM, Ho KKW, Rothrauff BB, et al. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism. FASEB J Off Publ Fed Am Soc Exp Biol. 2020;34(6):8172–86. Wang D, Pun CCM, Huang S, Tang TCM, Ho KKW, Rothrauff BB, et al. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism. FASEB J Off Publ Fed Am Soc Exp Biol. 2020;34(6):8172–86.
28.
go back to reference Li M, Jia J, Li S, Cui B, Huang J, Guo Z, et al. Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochem Biophys Res Commun. 2021;536:88–94.PubMedCrossRef Li M, Jia J, Li S, Cui B, Huang J, Guo Z, et al. Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochem Biophys Res Commun. 2021;536:88–94.PubMedCrossRef
29.
go back to reference Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harbor Perspect Biol. 2018;10(4):a022293.CrossRef Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harbor Perspect Biol. 2018;10(4):a022293.CrossRef
30.
go back to reference Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A. 2010;16(5):1549–58.PubMedCrossRef Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A. 2010;16(5):1549–58.PubMedCrossRef
31.
go back to reference Yao Z, Li J, Wang X, Peng S, Ning J, Qian Y, et al. MicroRNA-21-3p engineered umbilical cord stem cell-derived exosomes inhibit tendon adhesion. J Inflamm Res. 2020;13:303–16.PubMedPubMedCentralCrossRef Yao Z, Li J, Wang X, Peng S, Ning J, Qian Y, et al. MicroRNA-21-3p engineered umbilical cord stem cell-derived exosomes inhibit tendon adhesion. J Inflamm Res. 2020;13:303–16.PubMedPubMedCentralCrossRef
32.
go back to reference Wen Q, Zhou C, Luo W, Zhou M, Ma L. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells. J Transl Med. 2014;12:114.PubMedPubMedCentralCrossRef Wen Q, Zhou C, Luo W, Zhou M, Ma L. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells. J Transl Med. 2014;12:114.PubMedPubMedCentralCrossRef
33.
go back to reference Xu J, Yu TT, Zhang K, Li M, Shi HJ, Meng XJ, et al. HGF alleviates renal interstitial fibrosis via inhibiting the TGF-β1/SMAD pathway. Eur Rev Med Pharmacol Sci. 2018;22(22):7621–7.PubMed Xu J, Yu TT, Zhang K, Li M, Shi HJ, Meng XJ, et al. HGF alleviates renal interstitial fibrosis via inhibiting the TGF-β1/SMAD pathway. Eur Rev Med Pharmacol Sci. 2018;22(22):7621–7.PubMed
34.
go back to reference Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 2009;284(43):29988–96.PubMedPubMedCentralCrossRef Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 2009;284(43):29988–96.PubMedPubMedCentralCrossRef
Metadata
Title
TGFβ1-transfected tendon stem cells promote tendon fibrosis
Authors
Hong-Bin Yu
Jing Xiong
Hui-Zhen Zhang
Qin Chen
Xu-Yong Xie
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2022
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-022-03241-y

Other articles of this Issue 1/2022

Journal of Orthopaedic Surgery and Research 1/2022 Go to the issue