Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2022

Open Access 01-12-2022 | Research article

MiR-25 overexpression inhibits titanium particle-induced osteoclast differentiation via down-regulation of mitochondrial calcium uniporter in vitro

Authors: Weifan Hu, Yongbo Yu, Yang Sun, Feng Yuan, Fengchao Zhao

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2022

Login to get access

Abstract

Background

Mitochondrial calcium uniporter (MCU) is an important ion channel regulating calcium transport across the mitochondrial membrane. Calcium signaling, particularly via the Ca2+/NFATc1 pathway, has been identified as an important mediator of the osteoclast differentiation that leads to osteolysis around implants. The present study aimed to investigate whether down-regulation of MCU using microRNA-25 (miR-25) mimics could reduce osteoclast differentiation induced upon exposure to titanium (Ti) particles.

Methods

Ti particles were prepared. Osteoclast differentiation of RAW264.7 cells was induced by adding Ti particles and determined by TRAP staining. Calcium oscillation was determined using a dual-wavelength technique. After exposure of the cells in each group to Ti particles or control medium for 5 days, relative MCU and NFATc1 mRNA expression levels were determined by RT-qPCR. MCU and NFATc1 protein expression was determined by western blotting. NFATc1 activation was determined by immunofluorescence staining. Comparisons among multiple groups were conducted using one-way analysis of variance followed by Tukey test, and differences were considered significant if p < 0.05.

Results

MCU expression was reduced in response to miR-25 overexpression during the process of RAW 264.7 cell differentiation induced by Ti particles. Furthermore, osteoclast formation was inhibited, as evidenced by the low amplitude of calcium ion oscillation, reduced NFATc1 activation, and decreased mRNA and protein expression levels of nuclear factor-κB p65 and calmodulin kinases II/IV.

Conclusions

Regulation of MCU expression can impact osteoclast differentiation, and the underlying mechanism likely involves the Ca2+/NFATc1 signal pathway. Therefore, MCU may be a promising target in the development of new strategies to prevent and treat periprosthetic osteolysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levack AE, Cyphert EL, Bostrom MP, Hernandez CJ, von Recum HA, Carli AV. Current options and emerging biomaterials for periprosthetic joint infection. Curr Rheumatol Rep. 2018;20:33.CrossRef Levack AE, Cyphert EL, Bostrom MP, Hernandez CJ, von Recum HA, Carli AV. Current options and emerging biomaterials for periprosthetic joint infection. Curr Rheumatol Rep. 2018;20:33.CrossRef
2.
go back to reference Ghimire A, Song J. Anti-periprosthetic infection strategies: from implant surface topographical engineering to smart drug-releasing coatings. ACS Appl Mater Interfaces. 2021;13:20921–37.CrossRef Ghimire A, Song J. Anti-periprosthetic infection strategies: from implant surface topographical engineering to smart drug-releasing coatings. ACS Appl Mater Interfaces. 2021;13:20921–37.CrossRef
3.
go back to reference Siverino C, Freitag L, Arens D, Styger U, Richards RG, Moriarty TF, et al. Titanium wear particles exacerbate S. epidermidis-induced implant-related osteolysis and decrease efficacy of antibiotic therapy. Microorganisms. 2021;9:1945.CrossRef Siverino C, Freitag L, Arens D, Styger U, Richards RG, Moriarty TF, et al. Titanium wear particles exacerbate S. epidermidis-induced implant-related osteolysis and decrease efficacy of antibiotic therapy. Microorganisms. 2021;9:1945.CrossRef
4.
go back to reference Sundfeldt M, Carlsson L, Johansson C, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2009;77:177–97.CrossRef Sundfeldt M, Carlsson L, Johansson C, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2009;77:177–97.CrossRef
5.
go back to reference Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 2013;9:8046–58.CrossRef Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 2013;9:8046–58.CrossRef
6.
go back to reference Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;8:2091.CrossRef Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;8:2091.CrossRef
7.
go back to reference Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem. 2016;159:1–8.CrossRef Ikeda K, Takeshita S. The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem. 2016;159:1–8.CrossRef
8.
go back to reference Yang S, Li YP. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev. 2007;21:1803–16.CrossRef Yang S, Li YP. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev. 2007;21:1803–16.CrossRef
9.
go back to reference De Stefani D, Rizzuto R, Pozzan T. Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. 2016;85:161–92.CrossRef De Stefani D, Rizzuto R, Pozzan T. Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. 2016;85:161–92.CrossRef
10.
go back to reference Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–78.CrossRef Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13:566–78.CrossRef
11.
go back to reference Baradaran R, Wang C, Siliciano AF, Long SB. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. 2018;559:580–4.CrossRef Baradaran R, Wang C, Siliciano AF, Long SB. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. 2018;559:580–4.CrossRef
12.
go back to reference Boitier E, Rea R, Duchen M. Mitochondria exert a negative feedback on the propagation of intracellular Ca waves in rat cortical astrocytes. J Cell Biol. 1999;145:795–808.CrossRef Boitier E, Rea R, Duchen M. Mitochondria exert a negative feedback on the propagation of intracellular Ca waves in rat cortical astrocytes. J Cell Biol. 1999;145:795–808.CrossRef
13.
go back to reference Yoo J, Wu M, Yin Y, Herzik MA, Lander GC, Lee S-Y. Cryo-EM structure of a mitochondrial calcium uniporter. Science. 2018;361:506–11.CrossRef Yoo J, Wu M, Yin Y, Herzik MA, Lander GC, Lee S-Y. Cryo-EM structure of a mitochondrial calcium uniporter. Science. 2018;361:506–11.CrossRef
14.
go back to reference Nguyen NX, Armache J-P, Lee C, Yang Y, Zeng W, Mootha VK, et al. Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature. 2018;559:570–4.CrossRef Nguyen NX, Armache J-P, Lee C, Yang Y, Zeng W, Mootha VK, et al. Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature. 2018;559:570–4.CrossRef
15.
go back to reference Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol. 2015;16:545–53.CrossRef Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol. 2015;16:545–53.CrossRef
16.
go back to reference Cui C, Yang J, Fu L, Wang M, Wang X. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: a potential target for cancer treatment. Br J Pharmacol. 2019;176:1190–205.CrossRef Cui C, Yang J, Fu L, Wang M, Wang X. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: a potential target for cancer treatment. Br J Pharmacol. 2019;176:1190–205.CrossRef
17.
go back to reference Nemani N, Shanmughapriya S, Madesh M. Molecular regulation of MCU: implications in physiology and disease. Cell Calcium. 2018;74:86–93.CrossRef Nemani N, Shanmughapriya S, Madesh M. Molecular regulation of MCU: implications in physiology and disease. Cell Calcium. 2018;74:86–93.CrossRef
18.
go back to reference Woods J, Lovett J, Lai B, Harris H, Wilson J. Redox stability controls the cellular uptake and activity of ruthenium-based inhibitors of the mitochondrial calcium uniporter (MCU). Angew Chem Int Ed. 2020;59:6482–91.CrossRef Woods J, Lovett J, Lai B, Harris H, Wilson J. Redox stability controls the cellular uptake and activity of ruthenium-based inhibitors of the mitochondrial calcium uniporter (MCU). Angew Chem Int Ed. 2020;59:6482–91.CrossRef
19.
go back to reference Pan L, Huang B-J, Ma X-E, Wang S-Y, Feng J, Lv F, et al. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci. 2015;16:5420–33.CrossRef Pan L, Huang B-J, Ma X-E, Wang S-Y, Feng J, Lv F, et al. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci. 2015;16:5420–33.CrossRef
20.
go back to reference Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M, et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol. 2013;23:58–63.CrossRef Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M, et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol. 2013;23:58–63.CrossRef
21.
go back to reference Liu FX, Zhu ZA, Mao YQ, Liu M, Tang TT, Qiu SJ. Inhibition of titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide. Biomaterials. 2009;30:1756–62.CrossRef Liu FX, Zhu ZA, Mao YQ, Liu M, Tang TT, Qiu SJ. Inhibition of titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide. Biomaterials. 2009;30:1756–62.CrossRef
22.
go back to reference Lee SS, Woo CH, Chang JD, Kim JH. Roles of Rac and cytosolic phospholipase A2 in the intracellular signalling in response to titanium particles. Cell Signal. 2003;15:339–45.CrossRef Lee SS, Woo CH, Chang JD, Kim JH. Roles of Rac and cytosolic phospholipase A2 in the intracellular signalling in response to titanium particles. Cell Signal. 2003;15:339–45.CrossRef
23.
go back to reference Khatod M, Cafri G, Inacio MCS, Schepps AL, Paxton EW, Bini SA. Revision total hip arthoplasty: factors associated with re-revision surgery. J Bone Jt Surg Am Vol. 2015;97:359–66.CrossRef Khatod M, Cafri G, Inacio MCS, Schepps AL, Paxton EW, Bini SA. Revision total hip arthoplasty: factors associated with re-revision surgery. J Bone Jt Surg Am Vol. 2015;97:359–66.CrossRef
24.
go back to reference Zhang L, Yang Y, Liao Z, Liu Q, Lei X, Li M, et al. Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Theranostics. 2020;10:6638–60.CrossRef Zhang L, Yang Y, Liao Z, Liu Q, Lei X, Li M, et al. Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Theranostics. 2020;10:6638–60.CrossRef
25.
go back to reference Lozano-Calderon SA, Colman MW, Raskin KA, Hornicek FJ, Gebhardt M. Use of bisphosphonates in orthopedic surgery: pearls and pitfalls. Orthop Clin North Am. 2014;45:403–16.CrossRef Lozano-Calderon SA, Colman MW, Raskin KA, Hornicek FJ, Gebhardt M. Use of bisphosphonates in orthopedic surgery: pearls and pitfalls. Orthop Clin North Am. 2014;45:403–16.CrossRef
26.
go back to reference Wilkinson JM. The use of bisphosphonates to meet orthopaedic challenges. Bone. 2020;137:115443.CrossRef Wilkinson JM. The use of bisphosphonates to meet orthopaedic challenges. Bone. 2020;137:115443.CrossRef
27.
go back to reference Park-Min K-H. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci. 2018;75:2519–28.CrossRef Park-Min K-H. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci. 2018;75:2519–28.CrossRef
28.
go back to reference Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2006;208:30–49.CrossRef Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 2006;208:30–49.CrossRef
29.
go back to reference Takayanagi H, Sunhwa K, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2003;3:889–901.CrossRef Takayanagi H, Sunhwa K, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2003;3:889–901.CrossRef
30.
go back to reference Fan M, Zhang J, Tsai C-W, Orlando BJ, Rodriguez M, Xu Y, et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature. 2020;582:129–33.CrossRef Fan M, Zhang J, Tsai C-W, Orlando BJ, Rodriguez M, Xu Y, et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature. 2020;582:129–33.CrossRef
31.
go back to reference Zhu L, Song S, Pi Y, Yu Y, She W, Ye H, et al. Cumulated Ca2+ spike duration underlies Ca2+ oscillation frequency-regulated NF B transcriptional activity. J Cell Sci. 2011;124:2591–601.CrossRef Zhu L, Song S, Pi Y, Yu Y, She W, Ye H, et al. Cumulated Ca2+ spike duration underlies Ca2+ oscillation frequency-regulated NF B transcriptional activity. J Cell Sci. 2011;124:2591–601.CrossRef
32.
go back to reference Liu Q, Chen Y, Auger-Messier M, Molkentin JD. Interaction between NFκB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res. 2012;110:1077–86.CrossRef Liu Q, Chen Y, Auger-Messier M, Molkentin JD. Interaction between NFκB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res. 2012;110:1077–86.CrossRef
33.
go back to reference Ye J, Das S, Roy A, Wei W, Huang H, Lorenz-Guertin JM, et al. Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway. Mol Neurobiol. 2018;56:2123–36.CrossRef Ye J, Das S, Roy A, Wei W, Huang H, Lorenz-Guertin JM, et al. Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway. Mol Neurobiol. 2018;56:2123–36.CrossRef
34.
go back to reference Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med. 2006;12:1410–6.CrossRef Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med. 2006;12:1410–6.CrossRef
Metadata
Title
MiR-25 overexpression inhibits titanium particle-induced osteoclast differentiation via down-regulation of mitochondrial calcium uniporter in vitro
Authors
Weifan Hu
Yongbo Yu
Yang Sun
Feng Yuan
Fengchao Zhao
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2022
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-022-03030-7

Other articles of this Issue 1/2022

Journal of Orthopaedic Surgery and Research 1/2022 Go to the issue