Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Review

Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama

Authors: Carlo Luca Romanò, Sara Scarponi, Enrico Gallazzi, Delia Romanò, Lorenzo Drago

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Implanted biomaterials play a key role in current success of orthopedic and trauma surgery. However, implant-related infections remain among the leading reasons for failure with high economical and social associated costs. According to the current knowledge, probably the most critical pathogenic event in the development of implant-related infection is biofilm formation, which starts immediately after bacterial adhesion on an implant and effectively protects the microorganisms from the immune system and systemic antibiotics. A rationale, modern prevention of biomaterial-associated infections should then specifically focus on inhibition of both bacterial adhesion and biofilm formation. Nonetheless, currently available prophylactic measures, although partially effective in reducing surgical site infections, are not based on the pathogenesis of biofilm-related infections and unacceptable high rates of septic complications, especially in high-risk patients and procedures, are still reported.
In the last decade, several studies have investigated the ability of implant surface modifications to minimize bacterial adhesion, inhibit biofilm formation, and provide effective bacterial killing to protect implanted biomaterials, even if there still is a great discrepancy between proposed and clinically implemented strategies and a lack of a common language to evaluate them.
To move a step forward towards a more systematic approach in this promising but complicated field, here we provide a detailed overview and an original classification of the various technologies under study or already in the market. We may distinguish the following: 1. Passive surface finishing/modification (PSM): passive coatings that do not release bactericidal agents to the surrounding tissues, but are aimed at preventing or reducing bacterial adhesion through surface chemistry and/or structure modifications; 2. Active surface finishing/modification (ASM): active coatings that feature pharmacologically active pre-incorporated bactericidal agents; and 3. Local carriers or coatings (LCC): local antibacterial carriers or coatings, biodegradable or not, applied at the time of the surgical procedure, immediately prior or at the same time of the implant and around it. Classifying different technologies may be useful in order to better compare different solutions, to improve the design of validation tests and, hopefully, to improve and speed up the regulatory process in this rapidly evolving field.
Literature
1.
go back to reference Lentino JR. Prosthetic joint infections: Bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis. 2003;36:1157–61.PubMedCrossRef Lentino JR. Prosthetic joint infections: Bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis. 2003;36:1157–61.PubMedCrossRef
2.
go back to reference Dale H, Hallan G, Hallan G, Espehaug B, Havelin LI, Engesaeter LB. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop. 2009;80:639–45.PubMedCentralPubMedCrossRef Dale H, Hallan G, Hallan G, Espehaug B, Havelin LI, Engesaeter LB. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop. 2009;80:639–45.PubMedCentralPubMedCrossRef
3.
go back to reference Aggarwal VK, Bakhshi H, Ecker NU, Parvizi J, Gehrke T, Kendoff D. Organism profile in periprosthetic joint infection: Pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J Knee Surg. 2014, 10, doi:10.1055/s-0033-1364102. Aggarwal VK, Bakhshi H, Ecker NU, Parvizi J, Gehrke T, Kendoff D. Organism profile in periprosthetic joint infection: Pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J Knee Surg. 2014, 10, doi:10.​1055/​s-0033-1364102.
4.
go back to reference Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J. Periprosthetic joint infection increases the risk of one-year mortality. J Bone Joint Surg Am. 2013;95:2177–84.PubMedCrossRef Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J. Periprosthetic joint infection increases the risk of one-year mortality. J Bone Joint Surg Am. 2013;95:2177–84.PubMedCrossRef
5.
go back to reference Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplast. 2012;27:61–5.CrossRef Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplast. 2012;27:61–5.CrossRef
6.
go back to reference An YH, Friedman RJ. Prevention of sepsis in total joint arthroplasty. J Hosp Infect. 1996;33:93–108.PubMedCrossRef An YH, Friedman RJ. Prevention of sepsis in total joint arthroplasty. J Hosp Infect. 1996;33:93–108.PubMedCrossRef
7.
go back to reference Humphreys H. Surgical site infection, ultraclean ventilated operating theatres and prosthetic joint surgery: Where now? J Hosp Infect. 2012;81:71–2.PubMedCrossRef Humphreys H. Surgical site infection, ultraclean ventilated operating theatres and prosthetic joint surgery: Where now? J Hosp Infect. 2012;81:71–2.PubMedCrossRef
8.
go back to reference Bratzler DW, Houck PM. Surgical Infection Prevention Guidelines Writers Workgroup; American Academy of Orthopedic Surgeons. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis. 2004;38:1706–15.PubMedCrossRef Bratzler DW, Houck PM. Surgical Infection Prevention Guidelines Writers Workgroup; American Academy of Orthopedic Surgeons. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis. 2004;38:1706–15.PubMedCrossRef
9.
go back to reference Illingworth KD, Mihalko WM, Parvizi J, Sculco T, McArthur B, el Bitar Y, et al. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg Am. 2013;95:e50.PubMedCrossRef Illingworth KD, Mihalko WM, Parvizi J, Sculco T, McArthur B, el Bitar Y, et al. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg Am. 2013;95:e50.PubMedCrossRef
10.
go back to reference Pruzansky JS, Bronson MJ, Grelsamer RP, Strauss E, Moucha CS. Prevalence of modifiable surgical site infection risk factors in hip and knee joint arthroplasty patients at an urban academic hospital. J Arthroplast. 2014;29:272–6.CrossRef Pruzansky JS, Bronson MJ, Grelsamer RP, Strauss E, Moucha CS. Prevalence of modifiable surgical site infection risk factors in hip and knee joint arthroplasty patients at an urban academic hospital. J Arthroplast. 2014;29:272–6.CrossRef
11.
go back to reference Aggarwal VK, Tischler EH, Lautenbach C, Williams Jr GR, Abboud JA, Altena M, et al. Mitigation and education. J Arthroplast. 2014;29:19–25.CrossRef Aggarwal VK, Tischler EH, Lautenbach C, Williams Jr GR, Abboud JA, Altena M, et al. Mitigation and education. J Arthroplast. 2014;29:19–25.CrossRef
12.
go back to reference Namba RS, Inacio MC, Paxton EW. Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg Br. 2012;94:1330e8.CrossRef Namba RS, Inacio MC, Paxton EW. Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg Br. 2012;94:1330e8.CrossRef
13.
go back to reference Moriarty TF, Schlegel U, Perren S, Richards RG. Infection in fracture fixation: can we influence infection rates through implant design? J Mater Sci Mater Med. 2010;21:1031e5.CrossRef Moriarty TF, Schlegel U, Perren S, Richards RG. Infection in fracture fixation: can we influence infection rates through implant design? J Mater Sci Mater Med. 2010;21:1031e5.CrossRef
14.
go back to reference Jamsen E, Furnes O, Engesaeter LB, Konttinen YT, Odgaard A, Stefansdottir A, et al. Prevention of deep infection in joint replacement surgery. Acta Orthop. 2010;81:660e6.CrossRef Jamsen E, Furnes O, Engesaeter LB, Konttinen YT, Odgaard A, Stefansdottir A, et al. Prevention of deep infection in joint replacement surgery. Acta Orthop. 2010;81:660e6.CrossRef
15.
go back to reference van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand. 2001;72:557e71.CrossRef van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand. 2001;72:557e71.CrossRef
16.
go back to reference Cats-Baril W, Gehrke T, Huff K, Kendoff D, Maltenfort M, Parvizi J. International consensus on periprosthetic joint infection: description of the consensus process. Clin Orthop Relat Res. 2013;471:4065–75.PubMedCentralPubMedCrossRef Cats-Baril W, Gehrke T, Huff K, Kendoff D, Maltenfort M, Parvizi J. International consensus on periprosthetic joint infection: description of the consensus process. Clin Orthop Relat Res. 2013;471:4065–75.PubMedCentralPubMedCrossRef
17.
go back to reference Gristina AG, Naylor P, Myrvik Q. Infections from biomaterials and implants: a race for the surface. Med Prog Technol. 1988;14:205–24.PubMed Gristina AG, Naylor P, Myrvik Q. Infections from biomaterials and implants: a race for the surface. Med Prog Technol. 1988;14:205–24.PubMed
18.
go back to reference Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Investig. 2003;112:1466–77.PubMedCentralPubMedCrossRef Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Investig. 2003;112:1466–77.PubMedCentralPubMedCrossRef
19.
go back to reference Busscher HJ, van der Mei HC. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 2012;8:e1002440.PubMedCentralPubMedCrossRef Busscher HJ, van der Mei HC. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 2012;8:e1002440.PubMedCentralPubMedCrossRef
20.
go back to reference Chen Y, Busscher HJ, van der Mei HC, Norde W. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. Appl Environ Microbiol. 2011;77:5065–70.PubMedCentralPubMedCrossRef Chen Y, Busscher HJ, van der Mei HC, Norde W. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy. Appl Environ Microbiol. 2011;77:5065–70.PubMedCentralPubMedCrossRef
21.
go back to reference Wagner C, Aytac S, Hansch GM. Biofilm growth on implants: bacteria prefer plasma coats. Int J Artif Organs. 2011;34:811–7.PubMedCrossRef Wagner C, Aytac S, Hansch GM. Biofilm growth on implants: bacteria prefer plasma coats. Int J Artif Organs. 2011;34:811–7.PubMedCrossRef
22.
go back to reference Wang Y, Subbiahdoss G, de Vries J, Libera M, van der Mei HC, Busscher HJ. Effect of adsorbed fibronectin on the differential adhesion of osteoblast-like cells and Staphylococcus aureus with and without fibronectin-binding proteins. Biofouling. 2012;28:1011–21.PubMedCrossRef Wang Y, Subbiahdoss G, de Vries J, Libera M, van der Mei HC, Busscher HJ. Effect of adsorbed fibronectin on the differential adhesion of osteoblast-like cells and Staphylococcus aureus with and without fibronectin-binding proteins. Biofouling. 2012;28:1011–21.PubMedCrossRef
23.
go back to reference Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176–94.PubMedCentralPubMedCrossRef Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176–94.PubMedCentralPubMedCrossRef
24.
go back to reference Jenney CR, Anderson JM. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res. 2000;49:435–47.PubMedCrossRef Jenney CR, Anderson JM. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res. 2000;49:435–47.PubMedCrossRef
26.
go back to reference Roach P, Eglin D, Rohde K, Perry CC. Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263–77.PubMedCrossRef Roach P, Eglin D, Rohde K, Perry CC. Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263–77.PubMedCrossRef
27.
go back to reference Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.PubMedCrossRef Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.PubMedCrossRef
28.
go back to reference Stoodley P, Ehrlich GD, Sedghizadeh PP, Hall-Stoodley L, Baratz ME, Altman DT, et al. Orthopaedic biofilm infections. Curr Orthop Pract. 2011;22:558–63.PubMedCentralPubMedCrossRef Stoodley P, Ehrlich GD, Sedghizadeh PP, Hall-Stoodley L, Baratz ME, Altman DT, et al. Orthopaedic biofilm infections. Curr Orthop Pract. 2011;22:558–63.PubMedCentralPubMedCrossRef
29.
go back to reference Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 2013;8:509–24.PubMedCrossRef Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 2013;8:509–24.PubMedCrossRef
30.
go back to reference Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12:49–62.PubMedCrossRef Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12:49–62.PubMedCrossRef
32.
33.
go back to reference Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med. 2012;4:153rv10.PubMedCrossRef Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med. 2012;4:153rv10.PubMedCrossRef
34.
go back to reference Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Investig. 1984;73:1191–200.PubMedCentralPubMedCrossRef Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Investig. 1984;73:1191–200.PubMedCentralPubMedCrossRef
35.
go back to reference Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M. Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol. 2009;175:161–70.PubMedCentralPubMedCrossRef Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M. Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol. 2009;175:161–70.PubMedCentralPubMedCrossRef
36.
go back to reference Zimmerli W, Sendi P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol. 2011;33:295–306.PubMedCrossRef Zimmerli W, Sendi P. Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol. 2011;33:295–306.PubMedCrossRef
37.
go back to reference Berbari EF, Osmon DR, Lahr B, Eckel-Passow JE, Tsaras G, Hanssen AD, et al. The Mayo prosthetic joint infection risk score: implication for surgical site infection reporting and risk stratification. Infect Control Hosp Epidemiol. 2012;33:774–81.PubMedCrossRef Berbari EF, Osmon DR, Lahr B, Eckel-Passow JE, Tsaras G, Hanssen AD, et al. The Mayo prosthetic joint infection risk score: implication for surgical site infection reporting and risk stratification. Infect Control Hosp Epidemiol. 2012;33:774–81.PubMedCrossRef
38.
go back to reference Engelsman AF, Saldarriaga-Fernandez IC, Nejadnik MR, van Dam GM, Francis KP, Ploeg RJ, et al. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling. 2010;26:761–7.PubMedCrossRef Engelsman AF, Saldarriaga-Fernandez IC, Nejadnik MR, van Dam GM, Francis KP, Ploeg RJ, et al. The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling. 2010;26:761–7.PubMedCrossRef
39.
go back to reference Holá V, Růžička F, Votava M. The dynamics of staphylococcus epidermis biofilm formation in relation to nutrition, temperature, and time. Scr Medica. 2006;79:169–74. Holá V, Růžička F, Votava M. The dynamics of staphylococcus epidermis biofilm formation in relation to nutrition, temperature, and time. Scr Medica. 2006;79:169–74.
40.
go back to reference Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, et al. In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater. 2009;5:181e92. Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, et al. In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater. 2009;5:181e92.
41.
go back to reference Yu JC, Ho W, Lin J, Yip H, Wong PK. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol. 2003;37:2296e301.CrossRef Yu JC, Ho W, Lin J, Yip H, Wong PK. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol. 2003;37:2296e301.CrossRef
42.
go back to reference Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L, et al. Decreased bacterial adhesion to surface-treated titanium. Int J Artif Organs. 2005;28:718e30. Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L, et al. Decreased bacterial adhesion to surface-treated titanium. Int J Artif Organs. 2005;28:718e30.
43.
go back to reference Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29:4751–9.PubMedCrossRef Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29:4751–9.PubMedCrossRef
44.
go back to reference Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25:4135–48.PubMedCrossRef Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25:4135–48.PubMedCrossRef
45.
go back to reference Kaper HJ, Busscher HJ, Norde W. Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomat Sci Polym Ed. 2003;14:313–24.CrossRef Kaper HJ, Busscher HJ, Norde W. Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomat Sci Polym Ed. 2003;14:313–24.CrossRef
46.
go back to reference Oh S, Moon KS, Lee SH. Effect of RGD peptide-coated TiO2 nanotubes on the attachment, proliferation, and functionality of bone-related cells. J Nanomaterials. 2013;2013:1–11. Oh S, Moon KS, Lee SH. Effect of RGD peptide-coated TiO2 nanotubes on the attachment, proliferation, and functionality of bone-related cells. J Nanomaterials. 2013;2013:1–11.
47.
go back to reference Zhu H, Guo Z, Liu W. Adhesion behaviors on superhydrophobic surfaces. Chem Commun (Camb). 2014;18:3900–13.CrossRef Zhu H, Guo Z, Liu W. Adhesion behaviors on superhydrophobic surfaces. Chem Commun (Camb). 2014;18:3900–13.CrossRef
48.
go back to reference Braem A, van Mellaert L, Mattheys T, Hofmans D, de Waelheyns E, Geris L, et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A. 2013, doi:10.1002/jbm.a.34688. Braem A, van Mellaert L, Mattheys T, Hofmans D, de Waelheyns E, Geris L, et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A. 2013, doi:10.​1002/​jbm.​a.​34688.
49.
go back to reference Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–67.PubMedCrossRef Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–67.PubMedCrossRef
50.
51.
go back to reference Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One. 2011;6:e25029.PubMedCentralPubMedCrossRef Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One. 2011;6:e25029.PubMedCentralPubMedCrossRef
52.
go back to reference Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–54.PubMedCrossRef Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–54.PubMedCrossRef
53.
go back to reference Yeo IS, Kim HY, Lim KS, Han JS. Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs. 2012;35:762–72.PubMedCrossRef Yeo IS, Kim HY, Lim KS, Han JS. Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs. 2012;35:762–72.PubMedCrossRef
54.
go back to reference An YH, Bradley J, Powers DL, Friedman RJ. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. J Bone Joint Surg Br. 1997;79:816–9.PubMedCrossRef An YH, Bradley J, Powers DL, Friedman RJ. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. J Bone Joint Surg Br. 1997;79:816–9.PubMedCrossRef
55.
go back to reference Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol. 2009;83:541–53.PubMedCrossRef Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol. 2009;83:541–53.PubMedCrossRef
56.
go back to reference Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57:609–18.PubMedCrossRef Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57:609–18.PubMedCrossRef
57.
go back to reference Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.PubMedCrossRef Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.PubMedCrossRef
58.
go back to reference Stoodley P, Hall-Stoodley L, Costerton B, DeMeo P, Shirtliff M, Gawalt E, et al. Biofilms, biomaterials, and device-related infections. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. Waltham, MA, USA: Academic Press (Elsevier); 2013. p. 565–83.CrossRef Stoodley P, Hall-Stoodley L, Costerton B, DeMeo P, Shirtliff M, Gawalt E, et al. Biofilms, biomaterials, and device-related infections. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. Waltham, MA, USA: Academic Press (Elsevier); 2013. p. 565–83.CrossRef
59.
go back to reference Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.PubMedCrossRef Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.PubMedCrossRef
60.
go back to reference Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52:1636–53.PubMedCrossRef Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52:1636–53.PubMedCrossRef
61.
go back to reference Mijnendonckx K, Leys N, Mahillon J, Silver S, van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26:609–21.PubMedCrossRef Mijnendonckx K, Leys N, Mahillon J, Silver S, van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26:609–21.PubMedCrossRef
62.
go back to reference Noda I, Miyaji F, Ando Y, Miyamoto H, Shimazaki T, Yonekura Y, et al. Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J Biomed Mater Res B Appl Biomater. 2009;89:456–65.PubMedCrossRef Noda I, Miyaji F, Ando Y, Miyamoto H, Shimazaki T, Yonekura Y, et al. Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions. J Biomed Mater Res B Appl Biomater. 2009;89:456–65.PubMedCrossRef
63.
go back to reference Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–40.PubMedCrossRef Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–40.PubMedCrossRef
64.
go back to reference Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, et al. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case–control study. Bone Joint J. 2015;97-B(2):252–7.PubMedCrossRef Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, et al. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case–control study. Bone Joint J. 2015;97-B(2):252–7.PubMedCrossRef
65.
go back to reference Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101(5):389–95.PubMed Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101(5):389–95.PubMed
67.
go back to reference Petrini P, Arciola CR, Pezzali I, Bozzini S, Montanaro L, Tanzi MC, et al. Antibacterial activity of zinc modified titanium oxide surface. Int J Artif Organs. 2006;29:434–42.PubMed Petrini P, Arciola CR, Pezzali I, Bozzini S, Montanaro L, Tanzi MC, et al. Antibacterial activity of zinc modified titanium oxide surface. Int J Artif Organs. 2006;29:434–42.PubMed
69.
go back to reference Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65:1803–15.PubMedCrossRef Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65:1803–15.PubMedCrossRef
70.
go back to reference Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, et al. Hard implant coatings with antimicrobial properties. J Mater Sci Mater Med. 2011;22:2711–20.PubMedCrossRef Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, et al. Hard implant coatings with antimicrobial properties. J Mater Sci Mater Med. 2011;22:2711–20.PubMedCrossRef
71.
go back to reference Shtansky DV, Gloushankova NA, Bashkova IA, Kharitonova MA, Moizhess TG, Sheveiko AN, et al. Multifunctional Ti-(Ca, Zr)-(C, N, O, P) films for load-bearing implants. Biomaterials. 2006;27:3519–31.PubMed Shtansky DV, Gloushankova NA, Bashkova IA, Kharitonova MA, Moizhess TG, Sheveiko AN, et al. Multifunctional Ti-(Ca, Zr)-(C, N, O, P) films for load-bearing implants. Biomaterials. 2006;27:3519–31.PubMed
72.
go back to reference Arenas MA, Perez-Jorge C, Conde A, Matykina E, Hernandez-Lopez JM, Perez-Tanoira R, et al. Doped TiO2 anodic layers of enhanced antibacterial properties. Colloids Surf B: Biointerfaces. 2013;105:106–12.PubMedCrossRef Arenas MA, Perez-Jorge C, Conde A, Matykina E, Hernandez-Lopez JM, Perez-Tanoira R, et al. Doped TiO2 anodic layers of enhanced antibacterial properties. Colloids Surf B: Biointerfaces. 2013;105:106–12.PubMedCrossRef
73.
go back to reference Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–15.PubMedCrossRef Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–15.PubMedCrossRef
74.
go back to reference Holinka J, Pilz M, Kubista B, Presterl E, Windhager R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J. 2013;95:678–82.PubMedCrossRef Holinka J, Pilz M, Kubista B, Presterl E, Windhager R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J. 2013;95:678–82.PubMedCrossRef
75.
go back to reference Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomed. 2011;6:1553–8. Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomed. 2011;6:1553–8.
76.
go back to reference Martynkova GS, Valaskova M. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol. 2014;14:673–93.PubMedCrossRef Martynkova GS, Valaskova M. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol. 2014;14:673–93.PubMedCrossRef
77.
go back to reference Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N, et al. Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci. 2012;17(5):595–604.PubMedCentralPubMedCrossRef Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N, et al. Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci. 2012;17(5):595–604.PubMedCentralPubMedCrossRef
78.
go back to reference Antoci Jr V, King SB, Jose B, Parvizi J, Zeiger AR, Wickstrom E, et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J Orthop Res. 2007;25:858–66.PubMedCrossRef Antoci Jr V, King SB, Jose B, Parvizi J, Zeiger AR, Wickstrom E, et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J Orthop Res. 2007;25:858–66.PubMedCrossRef
79.
go back to reference Alt V, Bitschnau A, Osterling J, Sewing A, Meyer C, Kraus R, et al. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials. 2006;27:4627–34.PubMedCrossRef Alt V, Bitschnau A, Osterling J, Sewing A, Meyer C, Kraus R, et al. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials. 2006;27:4627–34.PubMedCrossRef
80.
go back to reference Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37:S105–12.PubMedCrossRef Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37:S105–12.PubMedCrossRef
81.
go back to reference Fei J, Liu GD, Pan CJ, Chen JY, Zhou YG, Xiao SH, et al. Preparation, release profiles and antibacterial properties of vancomycin-loaded Ca-P coating titanium alloy plate. J Mater Sci Mater Med. 2011;22:989–95.PubMedCrossRef Fei J, Liu GD, Pan CJ, Chen JY, Zhou YG, Xiao SH, et al. Preparation, release profiles and antibacterial properties of vancomycin-loaded Ca-P coating titanium alloy plate. J Mater Sci Mater Med. 2011;22:989–95.PubMedCrossRef
82.
go back to reference Neut D, Dijkstra RJ, Thompson JI, van der Mei HC, Busscher HJ. A gentamicin-releasing coating for cementless hip prostheses-Longitudinal evaluation of efficacy using in vitro bio-optical imaging and its wide-spectrum antibacterial efficacy. J Biomed Mater Res A. 2012;100:3220–6.PubMedCrossRef Neut D, Dijkstra RJ, Thompson JI, van der Mei HC, Busscher HJ. A gentamicin-releasing coating for cementless hip prostheses-Longitudinal evaluation of efficacy using in vitro bio-optical imaging and its wide-spectrum antibacterial efficacy. J Biomed Mater Res A. 2012;100:3220–6.PubMedCrossRef
83.
84.
go back to reference Shi X, Wu H, Li Y, Wei X, Du Y. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J Biomed Mater Res A. 2013;101:1373–8.PubMedCrossRef Shi X, Wu H, Li Y, Wei X, Du Y. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J Biomed Mater Res A. 2013;101:1373–8.PubMedCrossRef
85.
go back to reference Guillaume O, Garric X, Lavigne JP, Van Den Berghe H, Coudane J. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release. 2012;162:492–501.PubMedCrossRef Guillaume O, Garric X, Lavigne JP, Van Den Berghe H, Coudane J. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release. 2012;162:492–501.PubMedCrossRef
86.
go back to reference Tang Y, Zhao Y, Wang H, Gao Y, Liu X, Wang X, et al. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment. J Biomed Mater Res A. 2012;100:2071–8.PubMedCrossRef Tang Y, Zhao Y, Wang H, Gao Y, Liu X, Wang X, et al. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment. J Biomed Mater Res A. 2012;100:2071–8.PubMedCrossRef
87.
go back to reference Fuchs T, Stange R, Shmidmaier S, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.PubMedCentralPubMedCrossRef Fuchs T, Stange R, Shmidmaier S, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.PubMedCentralPubMedCrossRef
88.
go back to reference Campbell AA, Song L, Li XS, Nelson BJ, Bottoni C, Brooks DE, et al. Development, characterization, and anti-microbial efficacy of hydroxyapatitechlorhexidine coatings produced by surface-induced mineralization. J Biomed Mater Res. 2000;53:400e7.CrossRef Campbell AA, Song L, Li XS, Nelson BJ, Bottoni C, Brooks DE, et al. Development, characterization, and anti-microbial efficacy of hydroxyapatitechlorhexidine coatings produced by surface-induced mineralization. J Biomed Mater Res. 2000;53:400e7.CrossRef
89.
go back to reference Kozlovsky A, Artzi Z, Moses O, Kamin-Belsky N, Greenstein RB. Interaction of chlorhexidine with smooth and rough types of titanium surfaces. J Periodontol. 2006;77:1194e200.CrossRef Kozlovsky A, Artzi Z, Moses O, Kamin-Belsky N, Greenstein RB. Interaction of chlorhexidine with smooth and rough types of titanium surfaces. J Periodontol. 2006;77:1194e200.CrossRef
90.
go back to reference Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol. 2012;52:337–60.PubMedCrossRef Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol. 2012;52:337–60.PubMedCrossRef
92.
go back to reference Dobson AJ, Purves J, Kamysz W, Rolff J. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One. 2013;8:e76521.PubMedCentralPubMedCrossRef Dobson AJ, Purves J, Kamysz W, Rolff J. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One. 2013;8:e76521.PubMedCentralPubMedCrossRef
93.
go back to reference Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr SU, Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013;9:8224–31.PubMedCentralPubMedCrossRef Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr SU, Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013;9:8224–31.PubMedCentralPubMedCrossRef
94.
95.
go back to reference Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C. 2013;33:2203–12.CrossRef Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C. 2013;33:2203–12.CrossRef
96.
go back to reference Jennison T, McNally M, Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater. 2014;10:595–603.PubMedCrossRef Jennison T, McNally M, Pandit H. Prevention of infection in external fixator pin sites. Acta Biomater. 2014;10:595–603.PubMedCrossRef
97.
go back to reference Muszanska AK, Rochford ET, Gruszka A, Bastian AA, Busscher HJ, Norde W, et al. Antiadhesive polymer brush coating functionalized with antimicrobial and rgd peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15:2019–2026.PubMedCrossRef Muszanska AK, Rochford ET, Gruszka A, Bastian AA, Busscher HJ, Norde W, et al. Antiadhesive polymer brush coating functionalized with antimicrobial and rgd peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15:2019–2026.PubMedCrossRef
98.
go back to reference Yu Q, Cho J, Shivapooja P, Ista LK, Lopez GP. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces. 2013;5:9295–304.PubMedCrossRef Yu Q, Cho J, Shivapooja P, Ista LK, Lopez GP. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces. 2013;5:9295–304.PubMedCrossRef
99.
go back to reference Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41:511e5. Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41:511e5.
100.
go back to reference Engesaeter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI. Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand. 2003;74:644e51.CrossRef Engesaeter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI. Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand. 2003;74:644e51.CrossRef
101.
go back to reference Gutowski CJ, Zmistowski BM, Clyde CT, Parvizi J. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement. Bone Joint J. 2014;96-B(1):65–9.PubMedCrossRef Gutowski CJ, Zmistowski BM, Clyde CT, Parvizi J. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement. Bone Joint J. 2014;96-B(1):65–9.PubMedCrossRef
102.
go back to reference Dunbar MJ. Antibiotic bone cements: their use in routine primary total joint arthroplasty is justified. Orthopedics. 2009;32:9. Dunbar MJ. Antibiotic bone cements: their use in routine primary total joint arthroplasty is justified. Orthopedics. 2009;32:9.
103.
go back to reference van de Belt H, Neut D, Schenk W, van Horn JR, van Der Mei HC, Busscher HJ. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials. 2001;22(12):1607–11.PubMedCrossRef van de Belt H, Neut D, Schenk W, van Horn JR, van Der Mei HC, Busscher HJ. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials. 2001;22(12):1607–11.PubMedCrossRef
104.
go back to reference Neut D, Hendriks JG, van Horn JR, van der Mei HC, Busscher HJ. Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop. 2005;76(1):109–14.PubMedCrossRef Neut D, Hendriks JG, van Horn JR, van der Mei HC, Busscher HJ. Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop. 2005;76(1):109–14.PubMedCrossRef
105.
go back to reference De Grood MP. Pathology, diagnosis and treatment of subdural empyema. Arch Chir Neerl. 1951;3:128e38. De Grood MP. Pathology, diagnosis and treatment of subdural empyema. Arch Chir Neerl. 1951;3:128e38.
106.
go back to reference Buttaro MA, Pusso R, Piccaluga F. Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty. Two-stage revision results. J Bone Jt Surg Br. 2005;87:314e9. Buttaro MA, Pusso R, Piccaluga F. Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty. Two-stage revision results. J Bone Jt Surg Br. 2005;87:314e9.
107.
go back to reference Gautier H, Merle C, Auget JL, Daculsi G. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method. Biomaterials. 2000;21:243e9.CrossRef Gautier H, Merle C, Auget JL, Daculsi G. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method. Biomaterials. 2000;21:243e9.CrossRef
108.
go back to reference Yamamura K, Iwata H, Yotsuyanagi T. Synthesis of antibiotic-loaded hydroxyapatite beads and in vitro drug release testing. J Biomed Mater Res. 1992;26:1053e64.CrossRef Yamamura K, Iwata H, Yotsuyanagi T. Synthesis of antibiotic-loaded hydroxyapatite beads and in vitro drug release testing. J Biomed Mater Res. 1992;26:1053e64.CrossRef
109.
go back to reference Overstreet D, McLaren A, Calara F, Vernon B, McLemore R. Local gentamicin delivery from resorbable viscous hydrogels is therapeutically effective. Clin Orthop Relat Res. 2015;473(1):337–47.PubMedPubMedCentralCrossRef Overstreet D, McLaren A, Calara F, Vernon B, McLemore R. Local gentamicin delivery from resorbable viscous hydrogels is therapeutically effective. Clin Orthop Relat Res. 2015;473(1):337–47.PubMedPubMedCentralCrossRef
110.
go back to reference Pitarresi G, Palumbo FS, Calascibetta F, Fiorica C, Di Stefano M, Giammona G. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. Int J Pharm. 2013;449(1–2):84–94.PubMedCrossRef Pitarresi G, Palumbo FS, Calascibetta F, Fiorica C, Di Stefano M, Giammona G. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. Int J Pharm. 2013;449(1–2):84–94.PubMedCrossRef
111.
go back to reference Heydemann JS, Nelson CL. Short-term preventive antibiotics. Clin Orthop Relat Res. 1986;205:184–7.PubMed Heydemann JS, Nelson CL. Short-term preventive antibiotics. Clin Orthop Relat Res. 1986;205:184–7.PubMed
112.
go back to reference Antoci Jr V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res. 2007;462:200–6.PubMedCrossRef Antoci Jr V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res. 2007;462:200–6.PubMedCrossRef
113.
go back to reference Drago L, Boot W, Dimas K, Malizos K, Hänsch GM, Stuyck J, et al. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro ? Clin Orthop Relat Res. 2014;472(11):3311–23.PubMedCentralPubMedCrossRef Drago L, Boot W, Dimas K, Malizos K, Hänsch GM, Stuyck J, et al. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro ? Clin Orthop Relat Res. 2014;472(11):3311–23.PubMedCentralPubMedCrossRef
114.
go back to reference Giavaresi G, Meani E, Sartori M, Ferrari A, Bellini D, Sacchetta AC, et al. Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant. Int Orthop. 2014;38(7):1505–12.PubMedCentralPubMedCrossRef Giavaresi G, Meani E, Sartori M, Ferrari A, Bellini D, Sacchetta AC, et al. Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant. Int Orthop. 2014;38(7):1505–12.PubMedCentralPubMedCrossRef
115.
go back to reference Logoluso N, Malizos K, Blauth M, Danita A, Simon K, Romanò C. Anti-bacterial hydrogel coating of osteosynthesis implants: early clinical results from a multi-center prospective trial. European Cells and Materials. 2015;30 Suppl 2:35. Logoluso N, Malizos K, Blauth M, Danita A, Simon K, Romanò C. Anti-bacterial hydrogel coating of osteosynthesis implants: early clinical results from a multi-center prospective trial. European Cells and Materials. 2015;30 Suppl 2:35.
116.
go back to reference Boot W, Vogely HCh, Nikkels PGJ, Pouran B, van Rijen M, Dhert WJA, et al. Local prophylaxis of implant-related infections using a hydrogel as carrier. European Cells and Materials. 2015;30 Suppl 2:19. Boot W, Vogely HCh, Nikkels PGJ, Pouran B, van Rijen M, Dhert WJA, et al. Local prophylaxis of implant-related infections using a hydrogel as carrier. European Cells and Materials. 2015;30 Suppl 2:19.
117.
go back to reference Romanò CL, Logoluso N, Drago L. Antibiofilm strategies in orthopedics: where are we? In Peri-Operative Medical Management for Total Joiint Arthroplasty. Switzerland: Springer International Publishing; 2014. p. 269–86. doi:10.1007/978-3-319-07203-6. Romanò CL, Logoluso N, Drago L. Antibiofilm strategies in orthopedics: where are we? In Peri-Operative Medical Management for Total Joiint Arthroplasty. Switzerland: Springer International Publishing; 2014. p. 269–86. doi:10.​1007/​978-3-319-07203-6.
Metadata
Title
Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama
Authors
Carlo Luca Romanò
Sara Scarponi
Enrico Gallazzi
Delia Romanò
Lorenzo Drago
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0294-5

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue