Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2014

Open Access 01-12-2014 | Research article

Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging

Authors: Hai-Nan Chen, Kan Yang, Qi-Rong Dong, Yi Wang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2014

Login to get access

Abstract

Objective

This work aimed to assess tibial rotations, meniscal movements, and morphological changes during knee flexion and extension using kinematic magnetic resonance imaging (MRI).

Methods

Thirty volunteers with healthy knees were examined using kinematic MRI. The knees were imaged in the transverse plane with flexion and extension angles from 0° to 40° and 40° to 0°, respectively. The tibial interior and exterior rotation angles were measured, and the meniscal movement range, height change, and side movements were detected.

Results

The tibia rotated internally (11.55° ± 3.20°) during knee flexion and rotated externally (11.40° ± 3.0°) during knee extension. No significant differences were observed between the internal and external tibial rotation angles (P > 0.05), between males and females (P > 0.05), or between the left and right knee joints (P > 0.05). The tibial rotation angle with a flexion angle of 0° to 24° differed significantly from that with a flexion angle of 24° to 40° (P < 0.01). With knee flexion, the medial and lateral menisci moved backward and the height of the meniscus increased. The movement range was greater in the anterior horn than in the posterior horn and greater in the lateral meniscus than in the medial meniscus (P < 0.01). During backward movements of the menisci, the distance between the anterior and posterior horns decreased, with the decrease more apparent in the lateral meniscus (P < 0.01). The side movements of the medial and lateral menisci were not obvious, and a smaller movement range was found than that of the forward and backward movements.

Conclusion

Knee flexion and extension facilitated internal and external tibial rotations, which may be related to the ligament and joint capsule structure and femoral condyle geometry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang P, Zhao Z, Fu W, Xu H: Advancement of rotational alignment of femoral prosthesis in total knee arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011, 25: 1140-1144.PubMed Wang P, Zhao Z, Fu W, Xu H: Advancement of rotational alignment of femoral prosthesis in total knee arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011, 25: 1140-1144.PubMed
2.
go back to reference Testa R, Chouteau J, Viste A, Cheze L, Fessy MH, Moyen B: Reproducibility of an optical measurement system for the clinical evaluation of active knee rotation in weight-bearing, healthy subjects. Orthop Traumatol Surg Res. 2012, 98: 159-166. 10.1016/j.otsr.2011.08.017.CrossRefPubMed Testa R, Chouteau J, Viste A, Cheze L, Fessy MH, Moyen B: Reproducibility of an optical measurement system for the clinical evaluation of active knee rotation in weight-bearing, healthy subjects. Orthop Traumatol Surg Res. 2012, 98: 159-166. 10.1016/j.otsr.2011.08.017.CrossRefPubMed
3.
go back to reference Wyss JF, Foye PM, Stitik TP: An infected, extruded lateral meniscal cyst as a cause of knee symptoms. Am J Phys Med Rehabil. 2010, 89: 175-176. 10.1097/PHM.0b013e3181ca2431.CrossRefPubMed Wyss JF, Foye PM, Stitik TP: An infected, extruded lateral meniscal cyst as a cause of knee symptoms. Am J Phys Med Rehabil. 2010, 89: 175-176. 10.1097/PHM.0b013e3181ca2431.CrossRefPubMed
4.
go back to reference Mastrokalos DS, Papagelopoulos PJ, Mavrogenis AF, Hantes ME, Paessler HH: Changes of the posterior meniscal horn height during loading: an in vivo magnetic resonance imaging study. Orthopedics. 2008, 31: 68-10.3928/01477447-20080101-28.CrossRefPubMed Mastrokalos DS, Papagelopoulos PJ, Mavrogenis AF, Hantes ME, Paessler HH: Changes of the posterior meniscal horn height during loading: an in vivo magnetic resonance imaging study. Orthopedics. 2008, 31: 68-10.3928/01477447-20080101-28.CrossRefPubMed
5.
go back to reference Ishii Y, Terajima K, Terashima S, Koga Y: Three-dimensional kinematics of the human knee with intracorticd pin fixation. Clin Orthop. 1997, 343: 144-150.CrossRefPubMed Ishii Y, Terajima K, Terashima S, Koga Y: Three-dimensional kinematics of the human knee with intracorticd pin fixation. Clin Orthop. 1997, 343: 144-150.CrossRefPubMed
6.
go back to reference Ahrens P, Kirchhoff C, Fischer F, Heinrich P, Eisenhart-Rothe R, Hinterwimmer S, Kirchhoff S, Imhoff AB, Lorenz SG: A novel tool for objective assessment of femorotibial rotation: a cadaver study. Int Orthop. 2011, 35: 1611-1620. 10.1007/s00264-010-1159-5.PubMedCentralCrossRefPubMed Ahrens P, Kirchhoff C, Fischer F, Heinrich P, Eisenhart-Rothe R, Hinterwimmer S, Kirchhoff S, Imhoff AB, Lorenz SG: A novel tool for objective assessment of femorotibial rotation: a cadaver study. Int Orthop. 2011, 35: 1611-1620. 10.1007/s00264-010-1159-5.PubMedCentralCrossRefPubMed
7.
go back to reference Sanfridsson J, Ryd L, Svahn G, Fridén T, Jonsson K: Radiographic measurement of femorotibial rotation in weight-bearing. Acta Radiol. 2011, 42: 202-217. Sanfridsson J, Ryd L, Svahn G, Fridén T, Jonsson K: Radiographic measurement of femorotibial rotation in weight-bearing. Acta Radiol. 2011, 42: 202-217.
8.
go back to reference Amiri S, Cooke D, Kim IY, Wyss U: Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion. Proc Inst Mech Eng H. 2007, 221: 821-832. 10.1243/09544119JEIM181.CrossRefPubMed Amiri S, Cooke D, Kim IY, Wyss U: Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion. Proc Inst Mech Eng H. 2007, 221: 821-832. 10.1243/09544119JEIM181.CrossRefPubMed
9.
go back to reference Keays SL, Sayers M, Mellifont DB, Richardson C: Tibial displacement and rotation during seated knee extension and wall squatting: a comparative study of tibiofemoral kinematics between chronic unilateral anterior cruciate ligament deficient and healthy knees. Knee. 2013, 20: 346-353. 10.1016/j.knee.2012.07.005.CrossRefPubMed Keays SL, Sayers M, Mellifont DB, Richardson C: Tibial displacement and rotation during seated knee extension and wall squatting: a comparative study of tibiofemoral kinematics between chronic unilateral anterior cruciate ligament deficient and healthy knees. Knee. 2013, 20: 346-353. 10.1016/j.knee.2012.07.005.CrossRefPubMed
10.
go back to reference Lee TQ, Morris G, Csintalan RP: The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther. 2003, 33: 686-693. 10.2519/jospt.2003.33.11.686.CrossRefPubMed Lee TQ, Morris G, Csintalan RP: The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther. 2003, 33: 686-693. 10.2519/jospt.2003.33.11.686.CrossRefPubMed
11.
go back to reference Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V: Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc. 2012, 20: 732-736. 10.1007/s00167-011-1850-0.CrossRefPubMed Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V: Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc. 2012, 20: 732-736. 10.1007/s00167-011-1850-0.CrossRefPubMed
12.
go back to reference Kawahara Y, Uetani M, Fuchi K, Eguchi H, Hayashi K: MR assessment of movement and morphologic change in the menisci during knee flexion. Acta Radiol. 1999, 40: 610-614. 10.3109/02841859909175596.CrossRefPubMed Kawahara Y, Uetani M, Fuchi K, Eguchi H, Hayashi K: MR assessment of movement and morphologic change in the menisci during knee flexion. Acta Radiol. 1999, 40: 610-614. 10.3109/02841859909175596.CrossRefPubMed
13.
go back to reference Kim JE, Choi SH: Is the location of the Wrisberg ligament related to frequent complete discoid lateral meniscus tear?. Acta Radiol. 2010, 51: 1120-1125. 10.3109/02841851.2010.520026.CrossRefPubMed Kim JE, Choi SH: Is the location of the Wrisberg ligament related to frequent complete discoid lateral meniscus tear?. Acta Radiol. 2010, 51: 1120-1125. 10.3109/02841851.2010.520026.CrossRefPubMed
14.
go back to reference Muhle C, Thompson WO, Sciulli R, Pedowitz R, Ahn JM, Yeh L, Clopton P, Haghighi P, Trudell DJ, Resnick D: Transverse ligament and its effect on meniscal motion correlation of kinematic MR imaging and anatomic sections. Invest Radiol. 1999, 34: 558-565. 10.1097/00004424-199909000-00002.CrossRefPubMed Muhle C, Thompson WO, Sciulli R, Pedowitz R, Ahn JM, Yeh L, Clopton P, Haghighi P, Trudell DJ, Resnick D: Transverse ligament and its effect on meniscal motion correlation of kinematic MR imaging and anatomic sections. Invest Radiol. 1999, 34: 558-565. 10.1097/00004424-199909000-00002.CrossRefPubMed
15.
go back to reference d’Entremont AG, Wilson DR: Joint mechanics measurement using magnetic resonance imaging. Top Magn Reson Imaging. 2010, 21: 325-334. 10.1097/RMR.0b013e31823fb2b9.CrossRefPubMed d’Entremont AG, Wilson DR: Joint mechanics measurement using magnetic resonance imaging. Top Magn Reson Imaging. 2010, 21: 325-334. 10.1097/RMR.0b013e31823fb2b9.CrossRefPubMed
16.
go back to reference Park JS, Ryu KN, Yoon KH: Meniscal flounce on knee MRI: correlation with meniscal locations after positional changes. AJR Am J Roentgenol. 2006, 187: 364-370. 10.2214/AJR.05.0339.CrossRefPubMed Park JS, Ryu KN, Yoon KH: Meniscal flounce on knee MRI: correlation with meniscal locations after positional changes. AJR Am J Roentgenol. 2006, 187: 364-370. 10.2214/AJR.05.0339.CrossRefPubMed
17.
go back to reference Tibesku CO, Mastrokalos DS, Jagodzinski M, Pässler HH: MRI evaluation of meniscal movement and deformation in vivo under load bearing condition. Sportverletz Sportschaden. 2004, 18: 68-75. 10.1055/s-2004-813001.CrossRefPubMed Tibesku CO, Mastrokalos DS, Jagodzinski M, Pässler HH: MRI evaluation of meniscal movement and deformation in vivo under load bearing condition. Sportverletz Sportschaden. 2004, 18: 68-75. 10.1055/s-2004-813001.CrossRefPubMed
18.
go back to reference Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM: Meniscal movement: an in-vivo study using dynamic MRI. J Bone Joint Surg. 1999, 81: 37-41. 10.1302/0301-620X.81B1.8928.CrossRef Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM: Meniscal movement: an in-vivo study using dynamic MRI. J Bone Joint Surg. 1999, 81: 37-41. 10.1302/0301-620X.81B1.8928.CrossRef
19.
go back to reference Bylski-Austrow DI, Ciarelli MJ, Kayner DC, Matthews LS, Goldstein SA: Displacements of the menisci under joint load: an in vitro study in human knees. J Biomench. 1994, 27: 421-431. 10.1016/0021-9290(94)90018-3.CrossRef Bylski-Austrow DI, Ciarelli MJ, Kayner DC, Matthews LS, Goldstein SA: Displacements of the menisci under joint load: an in vitro study in human knees. J Biomench. 1994, 27: 421-431. 10.1016/0021-9290(94)90018-3.CrossRef
20.
go back to reference Thompson WO, Thaete FL, Fu FH, Dye SF: Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med. 1991, 19: 210-215. 10.1177/036354659101900302.CrossRefPubMed Thompson WO, Thaete FL, Fu FH, Dye SF: Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med. 1991, 19: 210-215. 10.1177/036354659101900302.CrossRefPubMed
21.
go back to reference Lam MH, Fong DT, Yung PS, Chan KM: Biomechanical techniques to evaluate tibial rotation. A systematic review. Knee Surg Sports Traumatol Arthrosc. 2012, 20: 1720-1729. 10.1007/s00167-011-1665-z.CrossRefPubMed Lam MH, Fong DT, Yung PS, Chan KM: Biomechanical techniques to evaluate tibial rotation. A systematic review. Knee Surg Sports Traumatol Arthrosc. 2012, 20: 1720-1729. 10.1007/s00167-011-1665-z.CrossRefPubMed
22.
go back to reference Digby CJ, Lake MJ, Lees A: High-speed non-invasive measurement of tibial rotation during the impact phase of running. Ergonomics. 2005, 48: 1623-1637. 10.1080/00140130500101304.CrossRefPubMed Digby CJ, Lake MJ, Lees A: High-speed non-invasive measurement of tibial rotation during the impact phase of running. Ergonomics. 2005, 48: 1623-1637. 10.1080/00140130500101304.CrossRefPubMed
23.
go back to reference Fithian DL, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Ortlop. 1990, 252: 19-31. Fithian DL, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Ortlop. 1990, 252: 19-31.
24.
go back to reference Szomor ZL, Martin TE, Bonar F, Murrell GA: The protective effects of meniscal transplantation on cartilage. J Bone Joint Surg. 2001, 82: 80-88. Szomor ZL, Martin TE, Bonar F, Murrell GA: The protective effects of meniscal transplantation on cartilage. J Bone Joint Surg. 2001, 82: 80-88.
25.
go back to reference Kim JG, Lee YS, Bae TS, Ha JK, Lee DH, Kim YJ, Ra HJ: Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation. Knee Surg Sports Traumatol Arthrosc. 2013, 21: 2121-2125. 10.1007/s00167-012-2182-4.CrossRefPubMed Kim JG, Lee YS, Bae TS, Ha JK, Lee DH, Kim YJ, Ra HJ: Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation. Knee Surg Sports Traumatol Arthrosc. 2013, 21: 2121-2125. 10.1007/s00167-012-2182-4.CrossRefPubMed
Metadata
Title
Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging
Authors
Hai-Nan Chen
Kan Yang
Qi-Rong Dong
Yi Wang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2014
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-014-0065-8

Other articles of this Issue 1/2014

Journal of Orthopaedic Surgery and Research 1/2014 Go to the issue

Reviewer Acknowledgement

Reviewer acknowledgement 2013