Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Research

On the pitfalls of PTV in lung SBRT using type-B dose engine: an analysis of PTV and worst case scenario concepts for treatment plan optimization

Authors: Ronnie Wing King Leung, Mark Ka Heng Chan, Chi-Leung Chiang, Matthew Wong, Oliver Blanck

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Background

PTV concept is presumed to introduce excessive and inconsistent GTV dose in lung stereotactic body radiotherapy (SBRT). That GTV median dose prescription (D50) and robust optimization are viable PTV–free solution (ICRU 91 report) to harmonize the GTV dose was investigated by comparisons with PTV–based SBRT plans.

Methods

Thirteen SBRT plans were optimized for 54 Gy / 3 fractions and prescribed (i) to 95% of the PTV (D95) expanded 5 mm from the ITV on the averaged intensity project (AIP) CT, i.e., PTVITV, (ii) to D95 of PTV derived from the van Herk (VH)‘s margin recipe on the mid–ventilation (MidV)–CT, i.e., PTVVH, (iii) to ITV D98 by worst case scenario (WCS) optimization on AIP,i.e., WCSITV and (iv) to GTV D98 by WCS using all 4DCT images, i.e., WCSGTV. These plans were subsequently recalculated on all 4DCT images and deformably summed on the MidV–CT. The dose differences between these plans were compared for the GTV and selected normal organs by the Friedman tests while the variability was compared by the Levene’s tests. The phase–to–phase changes of GTV dose through the respiration were assessed as an indirect measure of the possible increase of photon fluence owing to the type–B dose engine. Finally, all plans were renormalized to GTV D50 and all the dosimetric analyses were repeated to assess the relative influences of the SBRT planning concept and prescription method on the variability of target dose.

Results

By coverage prescriptions (i) to (iv), significantly smaller chest wall volume receiving ≥30 Gy (CWV30) and normal lung ≥20 Gy (NLV20Gy) were achieved by WCSITV and WCSGTV compared to PTVITV and PTVVH (p > 0.05). These plans differed significantly in the recalculated and summed GTV D2, D50 and D98 (p <  0.05). The inter–patient variability of all GTV dose parameters is however equal between these plans (Levene’s tests; p > 0.05). Renormalizing these plans to GTV D50 reduces their differences in GTV D2, and D98 to insignificant level (p > 0.05) and their inter–patient variability of all GTV dose parameters. None of these plans showed significant differences in GTV D2, D50 and D98 between respiratory phases, nor their inter–phase variability is significant.

Conclusion

Inconsistent GTV dose is not unique to PTV concept but occurs to other PTV–free concept in lung SBRT. GTV D50 renormalization effectively harmonizes the target dose among patients and SBRT concepts of geometric uncertainty management.
Literature
1.
go back to reference Guckenberger M, Andratschke N, Dieckmann K, Hoogeman MS, Hoyer M, Hurkmans C, Tanadini-Lang S, Lartigau E, Méndez Romero A, Senan S, Verellen D. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol. 2017;124:11–7.PubMed Guckenberger M, Andratschke N, Dieckmann K, Hoogeman MS, Hoyer M, Hurkmans C, Tanadini-Lang S, Lartigau E, Méndez Romero A, Senan S, Verellen D. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol. 2017;124:11–7.PubMed
2.
go back to reference Nohadani O, Seco J, Bortfeld T. Motion management with phase-adapted 4D-optimization. Phys Med Biol. 2010;55:5189–202.PubMedPubMedCentral Nohadani O, Seco J, Bortfeld T. Motion management with phase-adapted 4D-optimization. Phys Med Biol. 2010;55:5189–202.PubMedPubMedCentral
3.
go back to reference Lebredonchel S, Lacornerie T, Rault E, Wagner A, Reynaert N, Crop F. About the non-consistency of PTV-based prescription in lung. Phys Med. 2017;44:177–87.PubMed Lebredonchel S, Lacornerie T, Rault E, Wagner A, Reynaert N, Crop F. About the non-consistency of PTV-based prescription in lung. Phys Med. 2017;44:177–87.PubMed
4.
go back to reference Lacornerie T, Lisbona A, Mirabel X, Lartigau E, Reynaert N. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol. 2014;9:223.PubMedPubMedCentral Lacornerie T, Lisbona A, Mirabel X, Lartigau E, Reynaert N. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol. 2014;9:223.PubMedPubMedCentral
5.
go back to reference Li Y, Rodrigues A, Li T, Yuan L, Yin F-F, Wu QJ. Impact of dose calculation accuracy during optimization on lung IMRT plan quality. J Appl Clin Med Phys. 2015;16:219–28.PubMedCentral Li Y, Rodrigues A, Li T, Yuan L, Yin F-F, Wu QJ. Impact of dose calculation accuracy during optimization on lung IMRT plan quality. J Appl Clin Med Phys. 2015;16:219–28.PubMedCentral
6.
go back to reference Bzdusek K, Friberger H, Eriksson K, Hårdemark B, Robinson D, Kaus M. Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys. 2009;36:2328–39.PubMed Bzdusek K, Friberger H, Eriksson K, Hårdemark B, Robinson D, Kaus M. Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys. 2009;36:2328–39.PubMed
7.
go back to reference Bokrantz R. Multicriteria optimization for volumetric-modulated arc therapy by decomposition into a fluence-based relaxation and a segment weight-based restriction. Med Phys. 2012;39:6712–25.PubMed Bokrantz R. Multicriteria optimization for volumetric-modulated arc therapy by decomposition into a fluence-based relaxation and a segment weight-based restriction. Med Phys. 2012;39:6712–25.PubMed
8.
go back to reference Seuntjens J, Lartigau EF, Cora S, Ding GX, Goetsch S, Nuyttens J, Roberge D. ICRU report 91. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU. 2014;4(2):1–160. Seuntjens J, Lartigau EF, Cora S, Ding GX, Goetsch S, Nuyttens J, Roberge D. ICRU report 91. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU. 2014;4(2):1–160.
9.
go back to reference de Jong EEC, Guckenberger M, Andratschke N, Dieckmann K, Hoogeman MS, Milder M, Møller DS, Nyeng TB, Tanadini-Lang S, Lartigau E, et al. Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91. Radiother Oncol. 2019;142:217–23 . de Jong EEC, Guckenberger M, Andratschke N, Dieckmann K, Hoogeman MS, Milder M, Møller DS, Nyeng TB, Tanadini-Lang S, Lartigau E, et al. Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91. Radiother Oncol. 2019;142:217–23 .
10.
go back to reference Tanadini-Lang S, Wilke L, Karava K, Andratschke N, Ehrbar S, Guckenberger M. Dose normalization in lung SBRT based on ICRU 91 and comparison to alterative normalization methods. Radiother Oncol. 2018;127:S1213–4. Tanadini-Lang S, Wilke L, Karava K, Andratschke N, Ehrbar S, Guckenberger M. Dose normalization in lung SBRT based on ICRU 91 and comparison to alterative normalization methods. Radiother Oncol. 2018;127:S1213–4.
11.
go back to reference Baumann R, Chan MKH, Pyschny F, Stera S, Malzkuhn B, Wurster S, Huttenlocher S, Szücs M, Imhoff D, Keller C, et al. Clinical results of mean GTV dose optimized robotic-guided stereotactic body radiation therapy for lung tumors. Front Oncol. 2018;8:171.PubMedPubMedCentral Baumann R, Chan MKH, Pyschny F, Stera S, Malzkuhn B, Wurster S, Huttenlocher S, Szücs M, Imhoff D, Keller C, et al. Clinical results of mean GTV dose optimized robotic-guided stereotactic body radiation therapy for lung tumors. Front Oncol. 2018;8:171.PubMedPubMedCentral
12.
go back to reference Bibault J-E, Mirabel X, Lacornerie T, Tresch E, Reynaert N, Lartigau E. Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLoS One. 2015;10:e0133617.PubMedPubMedCentral Bibault J-E, Mirabel X, Lacornerie T, Tresch E, Reynaert N, Lartigau E. Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLoS One. 2015;10:e0133617.PubMedPubMedCentral
13.
go back to reference Liu W, Schild SE, Chang JY, Liao Z, Chang Y-H, Wen Z, Shen J, Stoker JB, Ding X, Hu Y, et al. Exploratory study of 4D versus 3D robust optimization in intensity modulated proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2016;95:523–33.PubMed Liu W, Schild SE, Chang JY, Liao Z, Chang Y-H, Wen Z, Shen J, Stoker JB, Ding X, Hu Y, et al. Exploratory study of 4D versus 3D robust optimization in intensity modulated proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2016;95:523–33.PubMed
14.
go back to reference Liang X, Zheng D, Mamalui-Hunter M, Flampouri S, Hoppe BS, Mendenhall N, Li Z. ITV-based robust optimization for VMAT planning of stereotactic body radiation therapy of lung cancer. Pract Radiat Oncol. 2019;9:38–48.PubMed Liang X, Zheng D, Mamalui-Hunter M, Flampouri S, Hoppe BS, Mendenhall N, Li Z. ITV-based robust optimization for VMAT planning of stereotactic body radiation therapy of lung cancer. Pract Radiat Oncol. 2019;9:38–48.PubMed
15.
go back to reference Zhang X, Rong Y, Morrill S, Fang J, Narayanasamy G, Galhardo E, Maraboyina S. Croft C, xia F, Penagaricano J: robust optimization in lung treatment plans accounting for geometric uncertainty. J Appl Clin Med Phys. 2018;19:19–26.PubMedPubMedCentral Zhang X, Rong Y, Morrill S, Fang J, Narayanasamy G, Galhardo E, Maraboyina S. Croft C, xia F, Penagaricano J: robust optimization in lung treatment plans accounting for geometric uncertainty. J Appl Clin Med Phys. 2018;19:19–26.PubMedPubMedCentral
16.
go back to reference Archibald-Heeren BR, Byrne MV, Hu Y, Cai M, Wang Y. Robust optimization of VMAT for lung cancer: Dosimetric implications of motion compensation techniques. J Appl Clin Med Phys. 2017;18:104–16.PubMedPubMedCentral Archibald-Heeren BR, Byrne MV, Hu Y, Cai M, Wang Y. Robust optimization of VMAT for lung cancer: Dosimetric implications of motion compensation techniques. J Appl Clin Med Phys. 2017;18:104–16.PubMedPubMedCentral
17.
go back to reference Wolthaus JWH, Schneider C, Sonke J-J, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, Damen EMF. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006;65:1560–71.PubMed Wolthaus JWH, Schneider C, Sonke J-J, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, Damen EMF. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006;65:1560–71.PubMed
18.
go back to reference Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015;42:40–53.PubMed Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015;42:40–53.PubMed
19.
go back to reference Wolthaus JWH, Sonke J-J, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, Damen EMF. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys. 2008;70:1229–38.PubMed Wolthaus JWH, Sonke J-J, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, Damen EMF. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys. 2008;70:1229–38.PubMed
20.
go back to reference Xiao Y, Papiez L, Paulus R, Timmerman R, Straube WL, Bosch WR, Michalski J, Galvin JM. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73:1235–42.PubMedPubMedCentral Xiao Y, Papiez L, Paulus R, Timmerman R, Straube WL, Bosch WR, Michalski J, Galvin JM. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73:1235–42.PubMedPubMedCentral
21.
go back to reference Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O. Deutschen Gesellschaft für R: definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol. 2014;190:26–33.PubMed Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O. Deutschen Gesellschaft für R: definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol. 2014;190:26–33.PubMed
22.
go back to reference Fredriksson A. A characterization of robust radiation therapy treatment planning methods—from expected value to worst case optimization. Med Phys. 2012;39:5169–81.PubMed Fredriksson A. A characterization of robust radiation therapy treatment planning methods—from expected value to worst case optimization. Med Phys. 2012;39:5169–81.PubMed
23.
go back to reference Korevaar EW, Habraken SJM, Scandurra D, Kierkels RGJ, Unipan M, Eenink MGC, Steenbakkers RJHM, Peeters SG, Zindler JD, Hoogeman M, Langendijk JA. Practical robustness evaluation in radiotherapy – a photon and proton-proof alternative to PTV-based plan evaluation. Radiother Oncol. 2019;141:267–74.PubMed Korevaar EW, Habraken SJM, Scandurra D, Kierkels RGJ, Unipan M, Eenink MGC, Steenbakkers RJHM, Peeters SG, Zindler JD, Hoogeman M, Langendijk JA. Practical robustness evaluation in radiotherapy – a photon and proton-proof alternative to PTV-based plan evaluation. Radiother Oncol. 2019;141:267–74.PubMed
24.
go back to reference Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, Flentje M. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69:276–85.PubMed Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, Flentje M. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69:276–85.PubMed
25.
go back to reference Fredriksson A, Bokrantz R. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning. Med Phys. 2014;41:081701.PubMed Fredriksson A, Bokrantz R. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning. Med Phys. 2014;41:081701.PubMed
26.
go back to reference Li J, Galvin J, Harrison A, Timmerman R, Yu Y, Xiao Y. Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;84:508–13.PubMedPubMedCentral Li J, Galvin J, Harrison A, Timmerman R, Yu Y, Xiao Y. Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;84:508–13.PubMedPubMedCentral
Metadata
Title
On the pitfalls of PTV in lung SBRT using type-B dose engine: an analysis of PTV and worst case scenario concepts for treatment plan optimization
Authors
Ronnie Wing King Leung
Mark Ka Heng Chan
Chi-Leung Chiang
Matthew Wong
Oliver Blanck
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-020-01573-9

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue