Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

The predictive value of 18F-FDG PET-CT for assessing the clinical outcomes in locally advanced NSCLC patients after a new induction treatment: low-dose fractionated radiotherapy with concurrent chemotherapy

Authors: Maria Vittoria Mattoli, Mariangela Massaccesi, Alessandra Castelluccia, Valentina Scolozzi, Giovanna Mantini, Maria Lucia Calcagni

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Patients with locally advanced non-small-cell lung cancer (LA-NSCLC) have poor prognosis despite several multimodal approaches. Recently, low-dose fractionated radiotherapy concurrent to the induction chemotherapy (IC-LDRT) has been proposed to further improve the effects of chemotherapy and prognosis. Until now, the predictive value of metabolic response after IC-LDRT has not yet been investigated. Aim: to evaluate whether the early metabolic response, assessed by 18F-fluoro-deoxyglucose positron emission-computed tomography (18F-FDG PET-CT), could predict the prognosis in LA-NSCLC patients treated with a multimodal approach, including IC-LDRT.

Methods

Forty-four consecutive patients (35males, mean age: 66 ± 7.8 years) with stage IIIA/IIIB NSCLC were retrospectively evaluated. Forty-four patients underwent IC-LDRT (2 cycles of chemotherapy, 40 cGy twice daily), 26/44 neo-adjuvant chemo-radiotherapy (CCRT: 50.4Gy), and 20/44 surgery. 18F-FDG PET-CT was performed before (baseline), after IC-LDRT (early) and after CCRT (final), applying PET response criteria in solid tumours (PERCIST). Patients with complete/partial metabolic response were classified as responders; patients with stable/progressive disease as non-responders. Progression free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meyer analysis; the relationship between clinical factors and survivals were assessed using uni-multivariate regression analysis.

Results

Forty-four out of 44, 42/44 and 23/42 patients underwent baseline, early and final PET-CT, respectively. SULpeak of primary tumour and lymph-node significantly (p = 0.004, p = 0.0002, respectively) decreased after IC-LDRT with a further reduction after CCRT (p = 0.0006, p = 0.02, respectively). At early PET-CT, 20/42 (47.6%) patients were classified as responders, 22/42 (52.3%) as non-responders. At final PET-CT, 19/23 patients were classified as responders (12 responders and 7 non-responders at early PET-CT), and 4/23 as non-responders (all non-responders at early PET-CT). Early responders had better PFS and OS than early non-responders (p ≤ 0.01). Early metabolic response was predictive factor for loco-regional, distant and global PFS (p = 0.02, p = 0.01, p = 0.005, respectively); surgery for loco-regional and global PFS (p = 0.03, p = 0.009, respectively).

Conclusions

In LA-NSCLC patients, 18F-FDG metabolic response assessed after only two cycles of IC-LDRT predicts the prognosis. The early evaluation of metabolic changes could allow to personalize therapy. This multimodality approach, including both low-dose radiotherapy that increases the effects of induction chemotherapy, and surgery that removes the disease, improved clinical outcomes. Further prospective investigation of this new induction approach is warranted.
Literature
2.
go back to reference Rami-Porta R, Crowley JJ, Goldstraw P. The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg. 2009;15:4–9.PubMed Rami-Porta R, Crowley JJ, Goldstraw P. The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg. 2009;15:4–9.PubMed
5.
go back to reference Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, et al. Treatment of stage III non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143 Suppl 5:e314S–40. doi:10.1378/chest.12-2360.PubMedCrossRef Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, et al. Treatment of stage III non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143 Suppl 5:e314S–40. doi:10.​1378/​chest.​12-2360.PubMedCrossRef
6.
go back to reference Crino L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v103–15. doi:10.1093/annonc/mdq207.PubMedCrossRef Crino L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v103–15. doi:10.​1093/​annonc/​mdq207.PubMedCrossRef
7.
go back to reference Pallis AG, Gridelli C, van Meerbeeck JP, Greillier L, Wedding U, Lacombe D, et al. EORTC Elderly Task Force and Lung Cancer Group and International Society for Geriatric Oncology (SIOG) experts’ opinion for the treatment of non-small-cell lung cancer in an elderly population. Ann Oncol. 2010;21(4):692–706. doi:10.1093/annonc/mdp360.PubMedCrossRef Pallis AG, Gridelli C, van Meerbeeck JP, Greillier L, Wedding U, Lacombe D, et al. EORTC Elderly Task Force and Lung Cancer Group and International Society for Geriatric Oncology (SIOG) experts’ opinion for the treatment of non-small-cell lung cancer in an elderly population. Ann Oncol. 2010;21(4):692–706. doi:10.​1093/​annonc/​mdp360.PubMedCrossRef
8.
go back to reference Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–90. doi:10.1200/JCO.2009.26.2543.PubMedCrossRef Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–90. doi:10.​1200/​JCO.​2009.​26.​2543.PubMedCrossRef
10.
go back to reference Mak KS, Gainor JF, Niemierko A, Oh KS, Willers H, Choi NC, et al. Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non-small cell lung cancer treated with radiotherapy for brain metastases. Neuro Oncol. 2015;17(2):296–302. doi:10.1093/neuonc/nou146.PubMedCrossRef Mak KS, Gainor JF, Niemierko A, Oh KS, Willers H, Choi NC, et al. Significance of targeted therapy and genetic alterations in EGFR, ALK, or KRAS on survival in patients with non-small cell lung cancer treated with radiotherapy for brain metastases. Neuro Oncol. 2015;17(2):296–302. doi:10.​1093/​neuonc/​nou146.PubMedCrossRef
12.
go back to reference Novello S, Vavalà T, Levra MG, Solitro F, Pelosi E, Veltri A, et al. Early response to chemotherapy in patients with non-small-cell lung cancer assessed by [18F]-fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Clin Lung Cancer. 2013;14(3):230–7. doi:10.1016/j.cllc.2012.10.004.PubMedCrossRef Novello S, Vavalà T, Levra MG, Solitro F, Pelosi E, Veltri A, et al. Early response to chemotherapy in patients with non-small-cell lung cancer assessed by [18F]-fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Clin Lung Cancer. 2013;14(3):230–7. doi:10.​1016/​j.​cllc.​2012.​10.​004.PubMedCrossRef
13.
go back to reference Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48(5):744–51.PubMedCrossRef Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48(5):744–51.PubMedCrossRef
14.
go back to reference Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34(4):463–71.PubMedCrossRef Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34(4):463–71.PubMedCrossRef
15.
go back to reference Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2003;21(7):1285–92.PubMedCrossRef Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2003;21(7):1285–92.PubMedCrossRef
16.
go back to reference Ohtsuka T, Nomori H, Watanabe K, Kaji M, Naruke T, Suemasu K, et al. Prognostic significance of [(18)F]fluorodeoxyglucose uptake on positron emission tomography in patients with pathologic stage I lung adenocarcinoma. Cancer. 2006;107(10):2468–73.PubMedCrossRef Ohtsuka T, Nomori H, Watanabe K, Kaji M, Naruke T, Suemasu K, et al. Prognostic significance of [(18)F]fluorodeoxyglucose uptake on positron emission tomography in patients with pathologic stage I lung adenocarcinoma. Cancer. 2006;107(10):2468–73.PubMedCrossRef
17.
go back to reference Decoster L, Schallier D, Everaert H, Nieboer K, Meysman M, Neyns B, et al. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2008;62(1):55–61. doi:10.1016/j.lungcan.2008.02.015.PubMedCrossRef Decoster L, Schallier D, Everaert H, Nieboer K, Meysman M, Neyns B, et al. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2008;62(1):55–61. doi:10.​1016/​j.​lungcan.​2008.​02.​015.PubMedCrossRef
18.
go back to reference Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(33):8362–70.PubMedCrossRef Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(33):8362–70.PubMedCrossRef
20.
go back to reference Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e166S–90.PubMedCrossRef Brunelli A, Kim AW, Berger KI, Addrizzo-Harris DJ. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e166S–90.PubMedCrossRef
21.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. doi:10.1007/s00259-014-2961-x.PubMedCrossRef Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. doi:10.​1007/​s00259-014-2961-x.PubMedCrossRef
22.
23.
go back to reference Nguyen NP, Bishop M, Borok TJ, Welsh J, Hamilton R, Cohen D, et al. Pattern of failure following chemoradiation for locally advanced non-small cell lung cancer: potential role for stereotactic body radiotherapy. Anticancer Res. 2010;30(3):953–61.PubMed Nguyen NP, Bishop M, Borok TJ, Welsh J, Hamilton R, Cohen D, et al. Pattern of failure following chemoradiation for locally advanced non-small cell lung cancer: potential role for stereotactic body radiotherapy. Anticancer Res. 2010;30(3):953–61.PubMed
26.
go back to reference Duhaylongsod FG, Lowe VJ, Patz Jr EF, Vaughn AL, Coleman RE, Wolfe WG. Lung tumor growth correlates with glucose metabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg. 1995;60(5):1348–52.PubMedCrossRef Duhaylongsod FG, Lowe VJ, Patz Jr EF, Vaughn AL, Coleman RE, Wolfe WG. Lung tumor growth correlates with glucose metabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg. 1995;60(5):1348–52.PubMedCrossRef
27.
go back to reference Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6(10):3837–44.PubMed Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6(10):3837–44.PubMed
28.
go back to reference Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med. 1995;36(9):1625–32.PubMed Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med. 1995;36(9):1625–32.PubMed
29.
go back to reference Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia. 2005;7(4):369–79.PubMedPubMedCentralCrossRef Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia. 2005;7(4):369–79.PubMedPubMedCentralCrossRef
31.
go back to reference Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004;45(1):19–27.PubMedCrossRef Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004;45(1):19–27.PubMedCrossRef
32.
go back to reference Erasmus JJ, McAdams HP, Patz Jr EF, Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol. 1998;170(5):1369–73.PubMedCrossRef Erasmus JJ, McAdams HP, Patz Jr EF, Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol. 1998;170(5):1369–73.PubMedCrossRef
33.
go back to reference de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55(1):79–87.PubMedCrossRef de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55(1):79–87.PubMedCrossRef
34.
go back to reference Lopci E, Toschi L, Grizzi F, Rahal D, Olivari L, Castino GF, et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur J Nucl Med Mol Imaging. 2016;43(11):1954–61. Lopci E, Toschi L, Grizzi F, Rahal D, Olivari L, Castino GF, et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur J Nucl Med Mol Imaging. 2016;43(11):1954–61.
35.
go back to reference Higashi K, Ueda Y, Seki H, Yuasa K, Oguchi M, Noguchi T, et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med. 1998;39(6):1016–20.PubMed Higashi K, Ueda Y, Seki H, Yuasa K, Oguchi M, Noguchi T, et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med. 1998;39(6):1016–20.PubMed
36.
37.
go back to reference Bufi E, Belli P, Costantini M, Rinaldi P, Di Matteo M, Bonatesta A, et al. MRI evaluation of neoadjuvant low-dose fractionated radiotherapy with concurrent chemotherapy in patients with locally advanced breast cancer. Br J Radiol. 2012;85(1019):e995–1103. doi:10.1259/bjr/31819475.PubMedPubMedCentralCrossRef Bufi E, Belli P, Costantini M, Rinaldi P, Di Matteo M, Bonatesta A, et al. MRI evaluation of neoadjuvant low-dose fractionated radiotherapy with concurrent chemotherapy in patients with locally advanced breast cancer. Br J Radiol. 2012;85(1019):e995–1103. doi:10.​1259/​bjr/​31819475.PubMedPubMedCentralCrossRef
38.
39.
go back to reference Konski A, Meyer JE, Joiner M, Hall MJ, Philip P, Shields A, et al. Multi-institutional phase I study of low-dose ultra-fractionated radiotherapy as a chemosensitizer for gemcitabine and erlotinib in patients with locally advanced or limited metastatic pancreatic cancer. Radiother Oncol. 2014;113(1):35–40. doi:10.1016/j.radonc.2014.08.014.PubMedCrossRef Konski A, Meyer JE, Joiner M, Hall MJ, Philip P, Shields A, et al. Multi-institutional phase I study of low-dose ultra-fractionated radiotherapy as a chemosensitizer for gemcitabine and erlotinib in patients with locally advanced or limited metastatic pancreatic cancer. Radiother Oncol. 2014;113(1):35–40. doi:10.​1016/​j.​radonc.​2014.​08.​014.PubMedCrossRef
40.
go back to reference Arnold SM, Regine WF, Ahmed MM, Valentino J, Spring P, Kudrimoti M, et al. Low-dose fractionated radiation as a chemopotentiator of neoadjuvant paclitaxel and carboplatin for locally advanced squamous cell carcinoma of the head and neck: results of a new treatment paradigm. Int J Radiat Oncol Biol Phys. 2004;58(5):1411–7.PubMedCrossRef Arnold SM, Regine WF, Ahmed MM, Valentino J, Spring P, Kudrimoti M, et al. Low-dose fractionated radiation as a chemopotentiator of neoadjuvant paclitaxel and carboplatin for locally advanced squamous cell carcinoma of the head and neck: results of a new treatment paradigm. Int J Radiat Oncol Biol Phys. 2004;58(5):1411–7.PubMedCrossRef
41.
go back to reference Balducci M, Diletto B, Chiesa S, D’Agostino GR, Gambacorta MA, Ferro M, et al. Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma: final report of a pilot study. Strahlenther Onkol. 2014;190(4):370–6. doi:10.1007/s00066-013-0506-z.PubMedCrossRef Balducci M, Diletto B, Chiesa S, D’Agostino GR, Gambacorta MA, Ferro M, et al. Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma: final report of a pilot study. Strahlenther Onkol. 2014;190(4):370–6. doi:10.​1007/​s00066-013-0506-z.PubMedCrossRef
42.
go back to reference Mantini G, Valentini V, Meduri B, Margaritora S, Balducci M, Micciché F, et al. Low-dose radiotherapy as a chemo-potentiator of a chemotherapy regimen with pemetrexed for recurrent non-small-cell lung cancer: a prospective phase II study. Radiother Oncol. 2012;105(2):161–6. doi:10.1016/j.radonc.2012.09.006.PubMedCrossRef Mantini G, Valentini V, Meduri B, Margaritora S, Balducci M, Micciché F, et al. Low-dose radiotherapy as a chemo-potentiator of a chemotherapy regimen with pemetrexed for recurrent non-small-cell lung cancer: a prospective phase II study. Radiother Oncol. 2012;105(2):161–6. doi:10.​1016/​j.​radonc.​2012.​09.​006.PubMedCrossRef
43.
go back to reference Gupta S, Koru-Sengul T, Arnold SM, Devi GR, Mohiuddin M, Ahmed MM. Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol Cancer Ther. 2011;10(2):292–302. doi:10.1158/1535-7163.MCT-10-0630.PubMedCrossRef Gupta S, Koru-Sengul T, Arnold SM, Devi GR, Mohiuddin M, Ahmed MM. Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol Cancer Ther. 2011;10(2):292–302. doi:10.​1158/​1535-7163.​MCT-10-0630.PubMedCrossRef
44.
go back to reference Dey S, Spring PM, Arnold S, Valentino J, Chendil D, Regine WF, et al. Low-dose fractionated radiation potentiates the effects of Paclitaxel in wild-type and mutant p53 head and neck tumor cell lines. Clin Cancer Res. 2003;9(4):1557–65.PubMed Dey S, Spring PM, Arnold S, Valentino J, Chendil D, Regine WF, et al. Low-dose fractionated radiation potentiates the effects of Paclitaxel in wild-type and mutant p53 head and neck tumor cell lines. Clin Cancer Res. 2003;9(4):1557–65.PubMed
45.
46.
go back to reference Nygård L, Vogelius IR, Fischer BM, Klausen TL, Langer SW, Lonsdale MN, et al. Early lesion-specific (18)F-FDG PET response to chemotherapy predicts time to lesion progression in locally advanced non-small cell lung cancer. Radiother Oncol. 2016;118(3):460–4. doi:10.1016/j.radonc.2016.01.009.PubMedCrossRef Nygård L, Vogelius IR, Fischer BM, Klausen TL, Langer SW, Lonsdale MN, et al. Early lesion-specific (18)F-FDG PET response to chemotherapy predicts time to lesion progression in locally advanced non-small cell lung cancer. Radiother Oncol. 2016;118(3):460–4. doi:10.​1016/​j.​radonc.​2016.​01.​009.PubMedCrossRef
47.
go back to reference Fledelius J, Khalil AA, Hjorthaug K, Frøkiaer J. Using positron emission tomography (PET) response criteria in solid tumours (PERCIST) 1.0 for evaluation of 2′-deoxy-2′-[18F] fluoro-D-glucose-PET/CT scans to predict survival early during treatment of locally advanced non-small cell lung cancer (NSCLC). J Med Imaging Radiat Oncol. 2016;60(2):231–8. doi:10.1111/1754-9485.12427.PubMedCrossRef Fledelius J, Khalil AA, Hjorthaug K, Frøkiaer J. Using positron emission tomography (PET) response criteria in solid tumours (PERCIST) 1.0 for evaluation of 2′-deoxy-2′-[18F] fluoro-D-glucose-PET/CT scans to predict survival early during treatment of locally advanced non-small cell lung cancer (NSCLC). J Med Imaging Radiat Oncol. 2016;60(2):231–8. doi:10.​1111/​1754-9485.​12427.PubMedCrossRef
49.
go back to reference Schreiner W, Dudek W, Lettmaier S, Gavrychenkova S, Rieker R, Fietkau R, et al. Neoadjuvant radiochemotherapy followed by curative resection in patients with advanced non-small cell lung cancer in stage IIIA/IIIB: prognostic factors and results. Zentralbl Chir. 2016;141(3):323–9. doi:10.1055/s-0042-101558.PubMedCrossRef Schreiner W, Dudek W, Lettmaier S, Gavrychenkova S, Rieker R, Fietkau R, et al. Neoadjuvant radiochemotherapy followed by curative resection in patients with advanced non-small cell lung cancer in stage IIIA/IIIB: prognostic factors and results. Zentralbl Chir. 2016;141(3):323–9. doi:10.​1055/​s-0042-101558.PubMedCrossRef
50.
go back to reference Pöttgen C, Gauler T, Bellendorf A, Guberina M, Bockisch A, Schwenzer N, et al. Standardized uptake decrease on [18F]-fluorodeoxyglucose positron emission tomography after neoadjuvant chemotherapy is a prognostic classifier for long-term outcome after multimodality treatment: secondary analysis of a randomized trial for resectable stage IIIA/B non-small-cell lung cancer. J Clin Oncol. 2016. doi:10.1200/jco.2015.65.5167. Pöttgen C, Gauler T, Bellendorf A, Guberina M, Bockisch A, Schwenzer N, et al. Standardized uptake decrease on [18F]-fluorodeoxyglucose positron emission tomography after neoadjuvant chemotherapy is a prognostic classifier for long-term outcome after multimodality treatment: secondary analysis of a randomized trial for resectable stage IIIA/B non-small-cell lung cancer. J Clin Oncol. 2016. doi:10.​1200/​jco.​2015.​65.​5167.
51.
go back to reference Ardizzoni A, Grossi F, Scolaro T, Giudici S, Foppiano F, Boni L, et al. Induction chemotherapy followed by concurrent standard radiotherapy and daily low-dose cisplatin in locally advanced non-small-cell lung cancer. Br J Cancer. 1999;81(2):310–5.PubMedPubMedCentralCrossRef Ardizzoni A, Grossi F, Scolaro T, Giudici S, Foppiano F, Boni L, et al. Induction chemotherapy followed by concurrent standard radiotherapy and daily low-dose cisplatin in locally advanced non-small-cell lung cancer. Br J Cancer. 1999;81(2):310–5.PubMedPubMedCentralCrossRef
52.
go back to reference Calcagni ML, Mattoli MV, Blasi MA, Petrone G, Sammarco MG, Indovina L, et al. A prospective analysis of 18F-FDG PET/CT in patients with uveal melanoma: comparison between metabolic rate of glucose (MRglu) and standardized uptake value (SUV) and correlations with histopathological features. Eur J Nucl Med Mol Imaging. 2013;40(11):1682–91. doi:10.1007/s00259-013-2488-6.PubMedCrossRef Calcagni ML, Mattoli MV, Blasi MA, Petrone G, Sammarco MG, Indovina L, et al. A prospective analysis of 18F-FDG PET/CT in patients with uveal melanoma: comparison between metabolic rate of glucose (MRglu) and standardized uptake value (SUV) and correlations with histopathological features. Eur J Nucl Med Mol Imaging. 2013;40(11):1682–91. doi:10.​1007/​s00259-013-2488-6.PubMedCrossRef
53.
go back to reference Calcagni ML, Taralli S, Cardillo G, Graziano P, Ialongo P, Mattoli MV, et al. Diagnostic performance of (18)F-fluorodeoxyglucose in 162 small pulmonary nodules incidentally detected in subjects without a history of malignancy. Ann Thorac Surg. 2016;101(4):1303–9. doi:10.1016/j.athoracsur.2015.10.072.PubMedCrossRef Calcagni ML, Taralli S, Cardillo G, Graziano P, Ialongo P, Mattoli MV, et al. Diagnostic performance of (18)F-fluorodeoxyglucose in 162 small pulmonary nodules incidentally detected in subjects without a history of malignancy. Ann Thorac Surg. 2016;101(4):1303–9. doi:10.​1016/​j.​athoracsur.​2015.​10.​072.PubMedCrossRef
Metadata
Title
The predictive value of 18F-FDG PET-CT for assessing the clinical outcomes in locally advanced NSCLC patients after a new induction treatment: low-dose fractionated radiotherapy with concurrent chemotherapy
Authors
Maria Vittoria Mattoli
Mariangela Massaccesi
Alessandra Castelluccia
Valentina Scolozzi
Giovanna Mantini
Maria Lucia Calcagni
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0737-0

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue