Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Dose distribution and tumor control probability in out-of-field lymph node stations in intensity modulated radiotherapy (IMRT) vs 3D-conformal radiotherapy (3D-CRT) of non-small-cell lung cancer: an in silico analysis

Authors: Jochen Fleckenstein, Andrea Eschler, Katharina Kremp, Stephanie Kremp, Christian Rübe

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

The advent of IMRT and image-guided radiotherapy (IGRT) in combination with involved-field radiotherapy (IF-RT) in inoperable non-small-cell lung cancer results in a decreased incidental dose deposition in elective nodal stations. While incidental nodal irradiation is considered a relevant by-product of 3D-CRT to control microscopic disease this planning study analyzed the impact of IMRT on dosimetric parameters and tumor control probabilities (TCP) in elective nodal stations in direct comparison with 3D-CRT.

Methods and materials

The retrospective planning study was performed on 41 patients with NSCLC (stages II-III). The CTV was defined as the primary tumor (GTV + 3 mm) and all FDG-PET-positive lymph node stations. As to the PTV (CTV + 7 mm), both an IMRT plan and a 3D-CRT plan were established. Plans were escalated until the pre-defined dose-constraints of normal tissues (spinal cord, lung, esophagus and heart) were reached. Additionally, IMRT plans were normalized to the total dose of the corresponding 3D-CRT. For two groups of out-of-field mediastinal node stations (all lymph node stations not included in the CTV (LNall_el) and those directly adjacent to the CTV (LNadj_el)) the equivalent uniform dose (EUD) and the TCP (for microscopic disease a D50 of 36.5 Gy was assumed) for the treatment with IMRT vs 3D-CRT were calculated.

Results

In comparison, a significantly higher total dose for the PTV could be achieved with the IMRT planning as opposed to conventional 3D-CRT planning (74.3 Gy vs 70.1 Gy; p = 0.03). In identical total reference doses, the EUD of LNadj_el is significantly lower with IMRT than with 3D-CRT (40.4 Gy vs. 44.2 Gy. P = 0.05) and a significant reduction of TCP with IMRT vs 3D-CRT was demonstrated for LNall_el and LNadj_el (12.6 % vs. 14.8 %; and 23.6 % vs 27.3 %, respectively).

Conclusions

In comparison with 3D-CRT, IMRT comes along with a decreased EUD in out-of-field lymph node stations. This translates into a statistically significant decrease in TCP-values. Yet, the combination of IF-RT and IMRT leads to a significantly better sparing of normal tissues and higher total doses whereas the potential therapeutic drawback of decreased incidental irradiation of elective lymph nodes is moderate.
Literature
1.
go back to reference De Ruysscher D, Faivre-Finn C, Nestle U, Hurkmans CW, Le Péchoux C, Price A, et al. European Organisation for Research and Treatment of Cancer Recommendations for Planning and Delivery of High-Dose, High-Precision Radiotherapy for Lung Cancer. J Clin Oncol. 2010;28:5301–10.CrossRefPubMed De Ruysscher D, Faivre-Finn C, Nestle U, Hurkmans CW, Le Péchoux C, Price A, et al. European Organisation for Research and Treatment of Cancer Recommendations for Planning and Delivery of High-Dose, High-Precision Radiotherapy for Lung Cancer. J Clin Oncol. 2010;28:5301–10.CrossRefPubMed
2.
go back to reference Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, et al. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys. 2012;82:435–41.PubMedCentralCrossRefPubMed Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, et al. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys. 2012;82:435–41.PubMedCentralCrossRefPubMed
3.
go back to reference Rosenzweig KE, Sura S, Jackson A, Yorke E. Involved-field radiation therapy for inoperable non small-cell lung cancer. J Clin Oncol. 2007;35:5557–61.CrossRef Rosenzweig KE, Sura S, Jackson A, Yorke E. Involved-field radiation therapy for inoperable non small-cell lung cancer. J Clin Oncol. 2007;35:5557–61.CrossRef
4.
go back to reference Sulman EP, Komaki R, Klopp AH, Cox JD, Chang JY. Exclusion of selective nodal irradiation is associated with minimal elective nodal failure in non-small cell lung cancer. Radiat Oncol. 2009;4:5–11.PubMedCentralCrossRefPubMed Sulman EP, Komaki R, Klopp AH, Cox JD, Chang JY. Exclusion of selective nodal irradiation is associated with minimal elective nodal failure in non-small cell lung cancer. Radiat Oncol. 2009;4:5–11.PubMedCentralCrossRefPubMed
5.
go back to reference Belderbos JS, Kepka L, Kong FM, Martel MK, Videtic GM, Jeremic B. Report from the International Atomic Energy Agency (IAEA) consultants’ meeting on elective nodal irradiation in lung cancer: non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 2008;72:335–42.CrossRefPubMed Belderbos JS, Kepka L, Kong FM, Martel MK, Videtic GM, Jeremic B. Report from the International Atomic Energy Agency (IAEA) consultants’ meeting on elective nodal irradiation in lung cancer: non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 2008;72:335–42.CrossRefPubMed
6.
go back to reference Fleckenstein J, Hellwig D, Kremp S, Grgic A, Gröschel A, Kirsch CM, et al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys. 2011;81:e283–9.CrossRefPubMed Fleckenstein J, Hellwig D, Kremp S, Grgic A, Gröschel A, Kirsch CM, et al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys. 2011;81:e283–9.CrossRefPubMed
7.
go back to reference Kimura T, Togami T, Nishiyama Y, Okawa M, Takashima H. Impact of incidental irradiation on clinically uninvolved nodal regions in patients with advanced non-small-cell lung cancer treated with involved-field radiation therapy: does incidental irradiation contribute to the low incidence of elective nodal failure? Int J Radiat Oncol Biol Phys. 2010;77:337–43.CrossRefPubMed Kimura T, Togami T, Nishiyama Y, Okawa M, Takashima H. Impact of incidental irradiation on clinically uninvolved nodal regions in patients with advanced non-small-cell lung cancer treated with involved-field radiation therapy: does incidental irradiation contribute to the low incidence of elective nodal failure? Int J Radiat Oncol Biol Phys. 2010;77:337–43.CrossRefPubMed
8.
go back to reference Zhao L, Chen M, Ten Haken R, Chetty I, Chapet O, Hayman JA, et al. Three-dimensional conformal radiation may deliver considerable dose of incidental nodal irradiation in patients with early stage node-negative non-small cell lung cancer when the tumor is large and centrally located. Radiother Oncol. 2007;82:153–9.CrossRefPubMed Zhao L, Chen M, Ten Haken R, Chetty I, Chapet O, Hayman JA, et al. Three-dimensional conformal radiation may deliver considerable dose of incidental nodal irradiation in patients with early stage node-negative non-small cell lung cancer when the tumor is large and centrally located. Radiother Oncol. 2007;82:153–9.CrossRefPubMed
9.
go back to reference Harris JP, Murphy JD, Hanlon Al, Le QT, Loo BW Jr, Diehn M. A population based comparative effectiveness study of radiotherapy techniques in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:872–84.CrossRefPubMed Harris JP, Murphy JD, Hanlon Al, Le QT, Loo BW Jr, Diehn M. A population based comparative effectiveness study of radiotherapy techniques in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:872–84.CrossRefPubMed
10.
go back to reference Shirvani SM, Jiang J, Gomez DR, Chang JY, Buchholz TA, Smith BD. Intensity modulated radiotherapy for stage III non-small cell lung cancer in the United States: predictors of use and association with toxicities. Lung Cancer. 2013;82:252–9.CrossRefPubMed Shirvani SM, Jiang J, Gomez DR, Chang JY, Buchholz TA, Smith BD. Intensity modulated radiotherapy for stage III non-small cell lung cancer in the United States: predictors of use and association with toxicities. Lung Cancer. 2013;82:252–9.CrossRefPubMed
11.
go back to reference Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL. Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys. 2003;57:875–90.CrossRefPubMed Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL. Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys. 2003;57:875–90.CrossRefPubMed
12.
go back to reference Murshed H, Liu HH, Liao Z, Barker JL, Wang X, Tucker SL, et al. Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;58:1258–67.CrossRefPubMed Murshed H, Liu HH, Liao Z, Barker JL, Wang X, Tucker SL, et al. Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;58:1258–67.CrossRefPubMed
13.
go back to reference Lievens Y, Nulens A, Gaber MA, Defraene G, De Wever W, Stroobants S, et al. Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study. Int J Radiat Oncol Biol Phys. 2011;80:306–13.CrossRefPubMed Lievens Y, Nulens A, Gaber MA, Defraene G, De Wever W, Stroobants S, et al. Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study. Int J Radiat Oncol Biol Phys. 2011;80:306–13.CrossRefPubMed
14.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMed
15.
go back to reference Chapet O, Kong FM, Quint LE, Chang AC, Ten Haken RK, Eisbruch A, et al. CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys. 2005;63:170–8.CrossRefPubMed Chapet O, Kong FM, Quint LE, Chang AC, Ten Haken RK, Eisbruch A, et al. CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys. 2005;63:170–8.CrossRefPubMed
16.
go back to reference ICRU. International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU Report 83. J ICRU. 2010;10:1–106.CrossRef ICRU. International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU Report 83. J ICRU. 2010;10:1–106.CrossRef
17.
go back to reference Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys. 2002;52:224–35.CrossRefPubMed Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys. 2002;52:224–35.CrossRefPubMed
18.
go back to reference Martel M, Ten Haken R, Hazuka M, Kessler M, Strawderman M, Turrisi AT, et al. Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer. 1999;24:31–7.CrossRefPubMed Martel M, Ten Haken R, Hazuka M, Kessler M, Strawderman M, Turrisi AT, et al. Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer. 1999;24:31–7.CrossRefPubMed
19.
go back to reference Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32:1227–37.CrossRefPubMed Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose response of human tumors. Int J Radiat Oncol Biol Phys. 1995;32:1227–37.CrossRefPubMed
20.
go back to reference Kepka L, Bujko K, Zolciak-Siwinska A, Garmol D. Incidental irradiation of mediastinal and hilar lymph node stations during 3D-conformal radiotherapy for non-small cell lung cancer. Acta Oncol. 2008;47:954–61.CrossRefPubMed Kepka L, Bujko K, Zolciak-Siwinska A, Garmol D. Incidental irradiation of mediastinal and hilar lymph node stations during 3D-conformal radiotherapy for non-small cell lung cancer. Acta Oncol. 2008;47:954–61.CrossRefPubMed
21.
go back to reference Kepka L, Maciejewski B, Withers R. Does incidental irradiation with doses below 50 Gy effectively reduce isolated nodal failures in non-small-cell lung cancer: dose–response relationship. Int J Radiat Oncol Biol Phys. 2009;73:1391–6.CrossRefPubMed Kepka L, Maciejewski B, Withers R. Does incidental irradiation with doses below 50 Gy effectively reduce isolated nodal failures in non-small-cell lung cancer: dose–response relationship. Int J Radiat Oncol Biol Phys. 2009;73:1391–6.CrossRefPubMed
22.
go back to reference Rajpara RS, Schreibmann E, Fox T, Stapleford LJ, Beitler JJ, Curran WJ, et al. Locoregional tumor failure after definitive radiation for patients with stage III non-small cell lung cancer. Radiat Oncol. 2014;9:187.PubMedCentralCrossRefPubMed Rajpara RS, Schreibmann E, Fox T, Stapleford LJ, Beitler JJ, Curran WJ, et al. Locoregional tumor failure after definitive radiation for patients with stage III non-small cell lung cancer. Radiat Oncol. 2014;9:187.PubMedCentralCrossRefPubMed
23.
go back to reference Withers HR, Suwinski R. Radiation dose response for subclinical metastases. Semin Radiat Oncol. 1998;8:224–8.CrossRefPubMed Withers HR, Suwinski R. Radiation dose response for subclinical metastases. Semin Radiat Oncol. 1998;8:224–8.CrossRefPubMed
24.
go back to reference Suwinski R, Maciejewski B, Withers HR. Dose–response relationship for elective neck irradiation of head and neck cancer – facts and controversies. Neoplasma. 1998;45:107–12.PubMed Suwinski R, Maciejewski B, Withers HR. Dose–response relationship for elective neck irradiation of head and neck cancer – facts and controversies. Neoplasma. 1998;45:107–12.PubMed
Metadata
Title
Dose distribution and tumor control probability in out-of-field lymph node stations in intensity modulated radiotherapy (IMRT) vs 3D-conformal radiotherapy (3D-CRT) of non-small-cell lung cancer: an in silico analysis
Authors
Jochen Fleckenstein
Andrea Eschler
Katharina Kremp
Stephanie Kremp
Christian Rübe
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0485-6

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue