Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments

Authors: Steffi Kantz, Matthias Söhn, Almut Troeller, Michael Reiner, Helmut Weingandt, Markus Alber, Claus Belka, Ute Ganswindt

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Purpose

The impact of multileaf collimator (MLC) design and IMRT technique on plan quality and delivery improvements for head-and-neck and meningioma patients is compared in a planning study.

Material and methods

Ten previously treated patients (5 head-and-neck, 5 meningioma) were re-planned for step-and-shoot IMRT (ssIMRT), sliding window IMRT (dMLC) and VMAT using the MLCi2 without (−) and with (+) interdigitation and the Agility-MLC attached to an Elekta 6MV linac. This results in nine plans per patient. Consistent patient individual optimization parameters are used. Plans are generated using the research tool Hyperion V2.4 (equivalent to Elekta Monaco 3.2) with hard constraints for critical structures and objectives for target structures. For VMAT plans, the improved segment shape optimization is used.
Critical structures are evaluated based on QUANTEC criteria. PTV coverage is compared by EUD, Dmean, homogeneity and conformity. Additionally, MU/plan, treatment times and number of segments are evaluated.

Results

As constrained optimization is used, all plans fulfill the hard constraints. Doses to critical structures do not differ more than 1Gy between the nine generated plans for each patient. Only larynx, parotids and eyes differ up to 1.5Gy (Dmean or Dmax) or 7 % (volume-constraint) due to (1) increased scatter, (2) not avoiding structures when using the full range of gantry rotation and (3) improved leaf sequencing with advanced segment shape optimization for VMAT plans. EUD, Dmean, homogeneity and conformity are improved using the Agility-MLC. However, PTV coverage is more affected by technique. MU increase with the use of dMLC and VMAT, while the MU are reduced by using the Agility-MLC. Fastest treatments are always achieved using Agility-MLC, especially in combination with VMAT.

Conclusion

Fastest treatments with the best PTV coverage are found for VMAT plans with Agility-MLC, achieving the same sparing of healthy tissue compared to the other combinations of ssIMRT, dMLC and VMAT with either MLCi2−/+ or Agility.
Footnotes
1
This advanced segment shape optimization routine is also available for ssIMRT in Monaco 5.1 and higher, and for dMLC in Monaco 5.0 and higher. With this, improved plans for ssIMRT and dMLC will be found.
 
Literature
1.
go back to reference Burmeister J, McDermott P. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system. Med Phys. 2004;31(12):3187–93.CrossRefPubMed Burmeister J, McDermott P. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system. Med Phys. 2004;31(12):3187–93.CrossRefPubMed
2.
go back to reference Wu Q, Wang Z, Kirkpatrick J, Chang Z. Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra-and extracranial lesions. Radiat Oncol. 2009;4:3.CrossRefPubMedCentralPubMed Wu Q, Wang Z, Kirkpatrick J, Chang Z. Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra-and extracranial lesions. Radiat Oncol. 2009;4:3.CrossRefPubMedCentralPubMed
3.
go back to reference Dvorak P, Georg D, Bogner J. Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lesions. Int J Radiat Oncol Biol Phys. 2005;61(5):1572–81.CrossRefPubMed Dvorak P, Georg D, Bogner J. Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lesions. Int J Radiat Oncol Biol Phys. 2005;61(5):1572–81.CrossRefPubMed
4.
go back to reference Monk J, Perks J, Doughty D, Plowman P. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(5):1443–9.CrossRefPubMed Monk J, Perks J, Doughty D, Plowman P. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(5):1443–9.CrossRefPubMed
5.
go back to reference Topolnjak R. Influence of the linac design on intensity-modulated radiotherapy of head-and-neck plans. Phys Med Biol. 2007;52(1):169–82.CrossRefPubMed Topolnjak R. Influence of the linac design on intensity-modulated radiotherapy of head-and-neck plans. Phys Med Biol. 2007;52(1):169–82.CrossRefPubMed
6.
go back to reference Chae S-M, Lee GW, Son SH. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol. 2014;9(1):72.CrossRefPubMedCentralPubMed Chae S-M, Lee GW, Son SH. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol. 2014;9(1):72.CrossRefPubMedCentralPubMed
7.
go back to reference Bortfeld T, Oelfke U, Nill S. What is the optimum leaf width of a multileaf collimator? Med Phys. 2000;27(11):2494–502.CrossRefPubMed Bortfeld T, Oelfke U, Nill S. What is the optimum leaf width of a multileaf collimator? Med Phys. 2000;27(11):2494–502.CrossRefPubMed
8.
go back to reference Low DA, Sohn JW, Klein EE, Markman J. Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy. Med Phys. 2001;28(5):752–6.CrossRefPubMed Low DA, Sohn JW, Klein EE, Markman J. Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy. Med Phys. 2001;28(5):752–6.CrossRefPubMed
9.
go back to reference Ramsey C, Spencer K. Leaf position error during conformal dynamic arc and intensity modulated arc treatments. Med Phys. 2001;28(1):67–72.CrossRefPubMed Ramsey C, Spencer K. Leaf position error during conformal dynamic arc and intensity modulated arc treatments. Med Phys. 2001;28(1):67–72.CrossRefPubMed
10.
go back to reference Wijesooriya K, Bartee C, Siebers J. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: Implications for 4D radiotherapy. Med Phys. 2005;32(4):932–41.CrossRefPubMed Wijesooriya K, Bartee C, Siebers J. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: Implications for 4D radiotherapy. Med Phys. 2005;32(4):932–41.CrossRefPubMed
11.
go back to reference Budgell G, Mott J. Requirements for leaf position accuracy for dynamic multileaf collimation. Phys Med Biol. 2000;45(5):1211–27.CrossRefPubMed Budgell G, Mott J. Requirements for leaf position accuracy for dynamic multileaf collimation. Phys Med Biol. 2000;45(5):1211–27.CrossRefPubMed
12.
go back to reference Vorwerk H, Wagner D, Hess C. Impact of different leaf velocities and dose rates on the number of monitor units and the dosevolume-histograms using intensity modulated radiotherapy with sliding-window technique. Radiat Oncol. 2008;3:31.CrossRefPubMedCentralPubMed Vorwerk H, Wagner D, Hess C. Impact of different leaf velocities and dose rates on the number of monitor units and the dosevolume-histograms using intensity modulated radiotherapy with sliding-window technique. Radiat Oncol. 2008;3:31.CrossRefPubMedCentralPubMed
13.
go back to reference Webb S. Historical perspective on IMRT. In: Intensity-Modulated Radiation Therapy—The State of the Art. Bristol, UK: Institute of Physics Publishing; 2003. p. 1–23. Webb S. Historical perspective on IMRT. In: Intensity-Modulated Radiation Therapy—The State of the Art. Bristol, UK: Institute of Physics Publishing; 2003. p. 1–23.
14.
go back to reference Tacke MB, Nill S, Häring P, Oelfke U. 6 MV dosimetric characterization of the 160 MLCTM, the new Siemens multileaf collimator. Med Phys. 2008;35(5):1634.CrossRefPubMed Tacke MB, Nill S, Häring P, Oelfke U. 6 MV dosimetric characterization of the 160 MLCTM, the new Siemens multileaf collimator. Med Phys. 2008;35(5):1634.CrossRefPubMed
15.
go back to reference van Kesteren Z, Janssen TM, Damen E, van Vliet-Vroegindeweij C. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts. Phys Med Biol. 2012;57(10):2943–52.CrossRefPubMed van Kesteren Z, Janssen TM, Damen E, van Vliet-Vroegindeweij C. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts. Phys Med Biol. 2012;57(10):2943–52.CrossRefPubMed
16.
go back to reference Lafond C, Chajon E, Devillers A, Louvel G, Toublanc S, Olivier M, et al. Impact of MLC leaf width on volumetric-modulated arc therapy planning for head and neck cancers. J Appl Clin Med Phys. 2013;14(6):4074.PubMed Lafond C, Chajon E, Devillers A, Louvel G, Toublanc S, Olivier M, et al. Impact of MLC leaf width on volumetric-modulated arc therapy planning for head and neck cancers. J Appl Clin Med Phys. 2013;14(6):4074.PubMed
17.
go back to reference Cosgrove VP, Thomas MDR, Weston SJ, Thompson MG, Reyneart N, Evans CJ, et al. Physical Characterization of a New Concept Design of an Elekta Radiation Head with Integrated 160-leaf Multi-leaf Collimator. Int J Radiat Oncol Biol Phys. 2009;75(3):S722–723.CrossRef Cosgrove VP, Thomas MDR, Weston SJ, Thompson MG, Reyneart N, Evans CJ, et al. Physical Characterization of a New Concept Design of an Elekta Radiation Head with Integrated 160-leaf Multi-leaf Collimator. Int J Radiat Oncol Biol Phys. 2009;75(3):S722–723.CrossRef
18.
go back to reference Alber M. A Concept for the Optimization of Radiotherapy. PhD thesis. Tübingen: Fakultät für Physik der Eberhard-Karls-Universität zu Tübingen; 2000. Alber M. A Concept for the Optimization of Radiotherapy. PhD thesis. Tübingen: Fakultät für Physik der Eberhard-Karls-Universität zu Tübingen; 2000.
19.
go back to reference Alber M, Birkner M, Laub W, Nüsslin F. Hyperion: an integrated IMRT planning tool. In: Proc. XIIIth Int. Conf. onthe Use of Computers in Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000. Alber M, Birkner M, Laub W, Nüsslin F. Hyperion: an integrated IMRT planning tool. In: Proc. XIIIth Int. Conf. onthe Use of Computers in Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000.
20.
go back to reference Alber M, Reemtsen R. Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method. Optim Methods Softw. 2007;22(3):391–411.CrossRef Alber M, Reemtsen R. Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method. Optim Methods Softw. 2007;22(3):391–411.CrossRef
21.
go back to reference Alber M, Nüsslin F. An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol. 1999;444:479–93.CrossRef Alber M, Nüsslin F. An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol. 1999;444:479–93.CrossRef
22.
go back to reference Alber M. Normal tissue dose-effect models in biological dose optimisation. Z Med Phys. 2008;18(2):102–10.CrossRefPubMed Alber M. Normal tissue dose-effect models in biological dose optimisation. Z Med Phys. 2008;18(2):102–10.CrossRefPubMed
23.
go back to reference Jeleń U, Söhn M, Alber M. A finite size pencil beam for IMRT dose optimization. Phys Med Biol. 2005;50(8):1747–66.CrossRefPubMed Jeleń U, Söhn M, Alber M. A finite size pencil beam for IMRT dose optimization. Phys Med Biol. 2005;50(8):1747–66.CrossRefPubMed
24.
go back to reference Jeleń U, Alber M. A finite size pencil beam algorithm for IMRT dose optimization: density corrections. Phys Med Biol. 2007;52(3):617–33.CrossRefPubMed Jeleń U, Alber M. A finite size pencil beam algorithm for IMRT dose optimization: density corrections. Phys Med Biol. 2007;52(3):617–33.CrossRefPubMed
25.
go back to reference Unkelbach J, Bortfeld T, Craft D, Alber M, Bangert M, Bokrantz R, et al. Optimization approaches to volumetric modulated arc therapy planning. Med Phys. 2015;42(3):1367–77.CrossRefPubMed Unkelbach J, Bortfeld T, Craft D, Alber M, Bangert M, Bokrantz R, et al. Optimization approaches to volumetric modulated arc therapy planning. Med Phys. 2015;42(3):1367–77.CrossRefPubMed
26.
go back to reference Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys. 1999;26(8):1466.CrossRefPubMed Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys. 1999;26(8):1466.CrossRefPubMed
27.
go back to reference Bedford JL, Thomas MDR, Smyth G. Beam modeling and VMAT performance with the Agility 160-leaf multileaf collimator. J Appl Clin Med Phys. 2013;14(2):4136.PubMed Bedford JL, Thomas MDR, Smyth G. Beam modeling and VMAT performance with the Agility 160-leaf multileaf collimator. J Appl Clin Med Phys. 2013;14(2):4136.PubMed
28.
go back to reference Budach W, Bölke E, Homey B. Severe cutaneous reaction during radiation therapy with concurrent cetuximab. N Engl J Med. 2007;357(5):514–5.CrossRefPubMed Budach W, Bölke E, Homey B. Severe cutaneous reaction during radiation therapy with concurrent cetuximab. N Engl J Med. 2007;357(5):514–5.CrossRefPubMed
29.
go back to reference Kantz S, Ganswindt U, Alber M, Söhn M. Impact of MLC properties and IMRT Technique in Meningeoma and Head and Neck. Int J Radiat Oncol Biol Phys. 2012;84(3):861.CrossRef Kantz S, Ganswindt U, Alber M, Söhn M. Impact of MLC properties and IMRT Technique in Meningeoma and Head and Neck. Int J Radiat Oncol Biol Phys. 2012;84(3):861.CrossRef
30.
go back to reference Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans: technical note. J Neurosurg. 2000;93(3):219–22.PubMed Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans: technical note. J Neurosurg. 2000;93(3):219–22.PubMed
31.
go back to reference Guckenberger M, Richter A, Krieger T. Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol. 2009;93(2):259–65.CrossRefPubMed Guckenberger M, Richter A, Krieger T. Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol. 2009;93(2):259–65.CrossRefPubMed
32.
go back to reference Mancini B, Wilkinson J. Intensity-modulated radiation therapy or volumetric-modulated arc therapy to reduce alopecia, xerostomia, and otitis after whole brain radiation therapy for brain metastases: a. J Radiat Oncol. 2013;2:177–83.CrossRef Mancini B, Wilkinson J. Intensity-modulated radiation therapy or volumetric-modulated arc therapy to reduce alopecia, xerostomia, and otitis after whole brain radiation therapy for brain metastases: a. J Radiat Oncol. 2013;2:177–83.CrossRef
33.
go back to reference Bertelsen A, Hansen C. Single arc volumetric modulated arc therapy of head and neck cancer. Radiother Oncol. 2010;95(2):142–8.CrossRefPubMed Bertelsen A, Hansen C. Single arc volumetric modulated arc therapy of head and neck cancer. Radiother Oncol. 2010;95(2):142–8.CrossRefPubMed
34.
go back to reference Leal A, Sánchez-Doblado F, Arráns R. MLC leaf width impact on the clinical dose distribution: a Monte Carlo approach. Int J Radiat Oncol Biol Phys. 2004;59(5):1548–59.CrossRefPubMed Leal A, Sánchez-Doblado F, Arráns R. MLC leaf width impact on the clinical dose distribution: a Monte Carlo approach. Int J Radiat Oncol Biol Phys. 2004;59(5):1548–59.CrossRefPubMed
35.
go back to reference Nill S, Tücking T, Münter M, Oelfke U. Intensity modulated radiation therapy with multileaf collimators of different leaf widths: a comparison of achievable dose distributions. Radiother Oncol. 2005;75(1):106–11.CrossRefPubMed Nill S, Tücking T, Münter M, Oelfke U. Intensity modulated radiation therapy with multileaf collimators of different leaf widths: a comparison of achievable dose distributions. Radiother Oncol. 2005;75(1):106–11.CrossRefPubMed
36.
go back to reference Wang S, Gong Y, Xu Q, Bai S, Lu Y, Jiang Q, et al. Impacts of multileaf collimators leaf width on intensity-modulated radiotherapy planning for nasopharyngeal carcinoma: analysis of two commercial elekta devices. Med Dosim. 2011;36(2):153–9.CrossRefPubMed Wang S, Gong Y, Xu Q, Bai S, Lu Y, Jiang Q, et al. Impacts of multileaf collimators leaf width on intensity-modulated radiotherapy planning for nasopharyngeal carcinoma: analysis of two commercial elekta devices. Med Dosim. 2011;36(2):153–9.CrossRefPubMed
37.
go back to reference Zwicker F, Hauswald H, Nill S. New multileaf collimator with a leaf width of 5 mm improves plan quality compared to 10 mm in step-and-shoot IMRT of HNC using integrated boost procedure. Strahlentherapie und Onkol. 2010;186(6):334–43.CrossRef Zwicker F, Hauswald H, Nill S. New multileaf collimator with a leaf width of 5 mm improves plan quality compared to 10 mm in step-and-shoot IMRT of HNC using integrated boost procedure. Strahlentherapie und Onkol. 2010;186(6):334–43.CrossRef
38.
go back to reference Wolff D, Stieler F, Welzel G. Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol. 2009;93(2):226–33.CrossRefPubMed Wolff D, Stieler F, Welzel G. Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol. 2009;93(2):226–33.CrossRefPubMed
39.
go back to reference Stieler F, Wolff D, Schmid H, Welzel G. A comparison of several modulated radiotherapy techniques for head and neck cancer and dosimetric validation of VMAT. Radiother Oncol. 2011;101(3):388–93.CrossRefPubMed Stieler F, Wolff D, Schmid H, Welzel G. A comparison of several modulated radiotherapy techniques for head and neck cancer and dosimetric validation of VMAT. Radiother Oncol. 2011;101(3):388–93.CrossRefPubMed
40.
go back to reference Vanetti E, Clivio A, Nicolini G. Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol. 2009;92:111–7.CrossRefPubMed Vanetti E, Clivio A, Nicolini G. Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol. 2009;92:111–7.CrossRefPubMed
41.
go back to reference Fogliata A, Clivio A, Nicolini G. Intensity modulation with photons for benign intracranial tumours: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol. 2008;89:254–62.CrossRefPubMed Fogliata A, Clivio A, Nicolini G. Intensity modulation with photons for benign intracranial tumours: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol. 2008;89:254–62.CrossRefPubMed
42.
go back to reference Rao M, Yang W, Chen F, Sheng K, Ye J. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys. 2010;37(3):1350–9.CrossRefPubMed Rao M, Yang W, Chen F, Sheng K, Ye J. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys. 2010;37(3):1350–9.CrossRefPubMed
43.
go back to reference Wiezorek T, Brachwitz T, Georg D. Rotational IMRT techniques compared to fixed gantry IMRT and tomotherapy: multi-institutional planning study for head-and-neck cases. Radiat Oncol. 2011;6(1):20.CrossRefPubMedCentralPubMed Wiezorek T, Brachwitz T, Georg D. Rotational IMRT techniques compared to fixed gantry IMRT and tomotherapy: multi-institutional planning study for head-and-neck cases. Radiat Oncol. 2011;6(1):20.CrossRefPubMedCentralPubMed
45.
go back to reference Jeong Y, Lee S, Kwak J, Cho I, Yoon SM, Kim JH, et al. A dosimetric comparison of volumetric modulated arc therapy (VMAT) and non-coplanar intensity modulated radiotherapy (IMRT) for nasal cavity and paranasal sinus cancer. Radiat Oncol. 2014;9(1):193.CrossRefPubMedCentralPubMed Jeong Y, Lee S, Kwak J, Cho I, Yoon SM, Kim JH, et al. A dosimetric comparison of volumetric modulated arc therapy (VMAT) and non-coplanar intensity modulated radiotherapy (IMRT) for nasal cavity and paranasal sinus cancer. Radiat Oncol. 2014;9(1):193.CrossRefPubMedCentralPubMed
46.
go back to reference Verbakel W, Cuijpers J. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74(1):252–9.CrossRefPubMed Verbakel W, Cuijpers J. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74(1):252–9.CrossRefPubMed
47.
go back to reference Peters S, Schiefer H, Plasswilm L. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse. Radiat Oncol. 2014;9(1):153.CrossRefPubMedCentralPubMed Peters S, Schiefer H, Plasswilm L. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse. Radiat Oncol. 2014;9(1):153.CrossRefPubMedCentralPubMed
Metadata
Title
Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments
Authors
Steffi Kantz
Matthias Söhn
Almut Troeller
Michael Reiner
Helmut Weingandt
Markus Alber
Claus Belka
Ute Ganswindt
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0447-z

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue