Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy

Authors: Roel GJ Kierkels, Ruurd Visser, Hendrik P Bijl, Johannes A Langendijk, Aart A van ‘t Veld, Roel JHM Steenbakkers, Erik W Korevaar

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Objectives

To demonstrate that novice dosimetry planners efficiently create clinically acceptable IMRT plans for head and neck cancer (HNC) patients using a commercially available multicriteria optimization (MCO) system.

Methods

Twenty HNC patients were enrolled in this in-silico comparative planning study. Per patient, novice planners with less experience in dosimetry planning created an IMRT plan using an MCO system (RayStation). Furthermore, a conventionally planned clinical IMRT plan was available (Pinnacle3). All conventional IMRT and MCO-plans were blind-rated by two expert radiation-oncologists in HNC, using a 5-point scale (1–5 with 5 the highest score) assessment form comprising 10 questions. Additionally, plan quality was reported in terms of planning time, dosimetric and normal tissue complication probability (NTCP) comparisons. Inter-rater reliability was derived using the intra-class correlation coefficient (ICC).

Results

In total, the radiation-oncologists rated 800 items on plan quality. The overall plan score indicated no differences between both planning techniques (conventional IMRT: 3.8 ± 1.2 vs. MCO: 3.6 ± 1.1, p = 0.29). The inter-rater reliability of all ratings was 0.65 (95% CI: 0.57–0.71), indicating substantial agreement between the radiation-oncologists. In 93% of cases, the scoring difference of the conventional IMRT and MCO-plans was one point or less. Furthermore, MCO-plans led to slightly higher dose uniformity in the therapeutic planning target volume, to a lower integral body dose (13.9 ± 4.5 Gy vs. 12.9 ± 4.0 Gy, p < 0.001), and to reduced dose to the contra-lateral parotid gland (28.1 ± 11.8 Gy vs. 23.0 ± 11.2 Gy, p < 0.002). Consequently, NTCP estimates for xerostomia reduced by 8.4 ± 7.4% (p < 0.003). The hands-on time of the conventional IMRT planning was approximately 205 min. The time to create an MCO-plan was on average 43 ± 12 min.

Conclusions

MCO planning enables novice treatment planners to create high quality IMRT plans for HNC patients. Plans were created with vastly reduced planning times, requiring less resources and a short learning curve.
Literature
1.
go back to reference Langendijk J a, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–6.CrossRefPubMed Langendijk J a, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–6.CrossRefPubMed
2.
go back to reference Dirix P, Nuyts S. Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol. 2010;11:85–91.CrossRefPubMed Dirix P, Nuyts S. Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol. 2010;11:85–91.CrossRefPubMed
3.
go back to reference Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12:127–36.CrossRefPubMedCentralPubMed Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12:127–36.CrossRefPubMedCentralPubMed
4.
go back to reference Christianen MEMC, Schilstra C, Beetz I, Muijs CT, Chouvalova O, Burlage FR, et al. Predictive modelling for swallowing dysfunction after primary (chemo)radiation: results of a prospective observational study. Radiother Oncol. 2012;105:107–14.CrossRefPubMed Christianen MEMC, Schilstra C, Beetz I, Muijs CT, Chouvalova O, Burlage FR, et al. Predictive modelling for swallowing dysfunction after primary (chemo)radiation: results of a prospective observational study. Radiother Oncol. 2012;105:107–14.CrossRefPubMed
5.
go back to reference Holt A, Van Gestel D, Arends MP, Korevaar EW, Schuring D, Kunze Busch MC, et al. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study. Radiat Oncol. 2013;8:26.CrossRefPubMedCentralPubMed Holt A, Van Gestel D, Arends MP, Korevaar EW, Schuring D, Kunze Busch MC, et al. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study. Radiat Oncol. 2013;8:26.CrossRefPubMedCentralPubMed
6.
go back to reference Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knöös T, et al. IMRT treatment planning:- a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol. 2005;76:354–61.CrossRefPubMed Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knöös T, et al. IMRT treatment planning:- a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol. 2005;76:354–61.CrossRefPubMed
7.
go back to reference Chung HT, Lee B, Park E, Lu JJ, Xia P. Can all centers plan intensity-modulated radiotherapy (IMRT) effectively? An external audit of dosimetric comparisons between three-dimensional conformal radiotherapy and IMRT for adjuvant chemoradiation for gastric cancer. Int J Radiat Oncol Biol Phys. 2008;71:1167–74.CrossRefPubMed Chung HT, Lee B, Park E, Lu JJ, Xia P. Can all centers plan intensity-modulated radiotherapy (IMRT) effectively? An external audit of dosimetric comparisons between three-dimensional conformal radiotherapy and IMRT for adjuvant chemoradiation for gastric cancer. Int J Radiat Oncol Biol Phys. 2008;71:1167–74.CrossRefPubMed
8.
go back to reference RaySearch Laboratories AB. Multi criteria optimization in RayStation. White Paper. 2012. RaySearch Laboratories AB. Multi criteria optimization in RayStation. White Paper. 2012.
9.
go back to reference Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:e83–90.CrossRefPubMedCentralPubMed Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:e83–90.CrossRefPubMedCentralPubMed
10.
go back to reference Voet PWJ, Dirkx MLP, Breedveld S, Fransen D, Levendag PC, Heijmen BJM. Toward fully automated multicriterial plan generation: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2013;85:866–72.CrossRefPubMed Voet PWJ, Dirkx MLP, Breedveld S, Fransen D, Levendag PC, Heijmen BJM. Toward fully automated multicriterial plan generation: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2013;85:866–72.CrossRefPubMed
11.
go back to reference Wala J, Craft D, Paly J, Zietman A, Efstathiou J. Maximizing dosimetric benefits of IMRT in the treatment of localized prostate cancer through multicriteria optimization planning. Med Dosim. 2013;38:298–303.CrossRefPubMed Wala J, Craft D, Paly J, Zietman A, Efstathiou J. Maximizing dosimetric benefits of IMRT in the treatment of localized prostate cancer through multicriteria optimization planning. Med Dosim. 2013;38:298–303.CrossRefPubMed
12.
go back to reference Thieke C, Küfer K-H, Monz M, Scherrer A, Alonso F, Oelfke U, et al. A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol. 2007;85:292–8.CrossRefPubMed Thieke C, Küfer K-H, Monz M, Scherrer A, Alonso F, Oelfke U, et al. A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol. 2007;85:292–8.CrossRefPubMed
13.
go back to reference McGarry CK, Bokrantz R, O’Sullivan JM, Hounsell AR. Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning. Med Dosim. 2014;39:205–11.CrossRefPubMed McGarry CK, Bokrantz R, O’Sullivan JM, Hounsell AR. Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning. Med Dosim. 2014;39:205–11.CrossRefPubMed
14.
go back to reference Craft D, Halabi T, Shih HA, Bortfeld T. An approach for practical multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys. 2007;69:1600–7.CrossRefPubMed Craft D, Halabi T, Shih HA, Bortfeld T. An approach for practical multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys. 2007;69:1600–7.CrossRefPubMed
15.
go back to reference Christianen MEMC, Langendijk JA, Westerlaan HE, Van De Water TA, Bijl HP. Delineation of organs at risk involved in swallowing for radiotherapy treatment planning. Radiother Oncol. 2011;101:394–402.CrossRefPubMed Christianen MEMC, Langendijk JA, Westerlaan HE, Van De Water TA, Bijl HP. Delineation of organs at risk involved in swallowing for radiotherapy treatment planning. Radiother Oncol. 2011;101:394–402.CrossRefPubMed
16.
go back to reference Houweling AC, Philippens MEP, Dijkema T, Roesink JM, Terhaard CHJ, Schilstra C, et al. A comparison of dose–response models for the parotid gland in a large group of head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2010;76:1259–65.CrossRefPubMed Houweling AC, Philippens MEP, Dijkema T, Roesink JM, Terhaard CHJ, Schilstra C, et al. A comparison of dose–response models for the parotid gland in a large group of head-and-neck cancer patients. Int J Radiat Oncol Biol Phys. 2010;76:1259–65.CrossRefPubMed
17.
go back to reference Fredriksson A, Bokrantz R. Deliverable navigation for multicriteria IMRT treatment planning by combining shared and individual apertures. Phys Med Biol. 2013;58:7683–97.CrossRefPubMed Fredriksson A, Bokrantz R. Deliverable navigation for multicriteria IMRT treatment planning by combining shared and individual apertures. Phys Med Biol. 2013;58:7683–97.CrossRefPubMed
18.
go back to reference Kierkels RGJ, Korevaar EW, Steenbakkers RJHM, Janssen T, Van’t Veld AA, Langendijk JA, et al. Direct use of multivariable normal tissue complication probability models in treatment plan optimisation for individualised head and neck cancer radiotherapy produces clinically acceptable treatment plans. Radiother Oncol. 2014;112:430–6.CrossRefPubMed Kierkels RGJ, Korevaar EW, Steenbakkers RJHM, Janssen T, Van’t Veld AA, Langendijk JA, et al. Direct use of multivariable normal tissue complication probability models in treatment plan optimisation for individualised head and neck cancer radiotherapy produces clinically acceptable treatment plans. Radiother Oncol. 2014;112:430–6.CrossRefPubMed
Metadata
Title
Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy
Authors
Roel GJ Kierkels
Ruurd Visser
Hendrik P Bijl
Johannes A Langendijk
Aart A van ‘t Veld
Roel JHM Steenbakkers
Erik W Korevaar
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0385-9

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue