Skip to main content
Top
Published in: Head & Face Medicine 1/2016

Open Access 01-12-2016 | Research

Novel use of cranial epidural space in rabbits as an animal model to investigate bone volume augmentation potential of different bone graft substitutes

Authors: Ivan Valdivia-Gandur, Wilfried Engelke, Víctor Beltrán, Eduardo Borie, Ramón Fuentes, María Cristina Manzanares-Céspedes

Published in: Head & Face Medicine | Issue 1/2016

Login to get access

Abstract

Background

The success of bone augmentation to a major degree depends on the biomechanics and biological conditions of the surrounding tissues. Therefore, an animal model is needed providing anatomical sites with similar mechanical pressures for comparing its influence on different biomaterials for bone regeneration. The present report describes the new bone formation associated to biomaterial in a bursa created in the epidural space, between dura mater and cranial calvaria, under the constant pressure of cerebrospinal fluid.

Methods

Five adult California rabbits were used for the trial. In each animal, two bursae were created in the epidural spaces, in the anterior part of the skull, below both sides of the interfrontal suture. The spaces between dura mater and cranial calvaria were filled with in-situ hardening biphasic calcium phosphate containing hydroxyapatite and beta tricalcium-phosphate (BCP), in-situ hardening phase-pure beta-tricalcium phosphate (β-TCP) or without any biomaterials (sham). After 90 days, the animals were sacrificed, and the defect sites were extracted and processed for histomorphometric analysis by optical and backscattered electron microscopy.

Results

The cranial epidural spaces created (n = 10) could be preserved by the application both BCP (n = 3) and β-TCP biomaterials (n = 3) in all experimental sites. The sites augmented with BCP showed less new bone formation but a trend to better volume preservation than the sites augmented with β-TCP. However, the bone in the BCP sites seemed to be more mature as indicated by the higher percentage of lamellar bone in the sites. In contrast, the created space could not be preserved, and new bone formation was scarce in the sham-operated sites (n = 4).

Conclusion

The experimental bursae created bilaterally in the epidural space allows comparing objectively bone formation in relation to biomaterials for bone regeneration under permanent physiological forces from cerebrospinal fluid pressure.
Literature
1.
go back to reference Asai S, Shimizu Y, Ooya K. Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res. 2000;13:405–9.CrossRef Asai S, Shimizu Y, Ooya K. Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res. 2000;13:405–9.CrossRef
2.
go back to reference Xu H, Shimizu Y, Asai S, Ooya K. Grafting of deproteinized bone particles inhibits bone resorption after maxillary sinus floor elevation. Clin Oral Implants Res. 2004;15:126–33.CrossRefPubMed Xu H, Shimizu Y, Asai S, Ooya K. Grafting of deproteinized bone particles inhibits bone resorption after maxillary sinus floor elevation. Clin Oral Implants Res. 2004;15:126–33.CrossRefPubMed
4.
go back to reference Dung SZ, Tu YK. Effect of different alloplast materials on the stability of vertically augmented new tissue. Int J Oral Maxillofac Implants. 2012;27:1375–81.PubMed Dung SZ, Tu YK. Effect of different alloplast materials on the stability of vertically augmented new tissue. Int J Oral Maxillofac Implants. 2012;27:1375–81.PubMed
5.
go back to reference Meltzer P, von Wilmowsky C, Zimmermann R, Wiltfang J, Schlegel KA. The effect of current used bone substitution materials and platelet-rich plasma on periosteal cells by ectopic site implantation: an in-vivo pilot study. J Craniomaxillofac Surg. 2012;40:409–15.CrossRef Meltzer P, von Wilmowsky C, Zimmermann R, Wiltfang J, Schlegel KA. The effect of current used bone substitution materials and platelet-rich plasma on periosteal cells by ectopic site implantation: an in-vivo pilot study. J Craniomaxillofac Surg. 2012;40:409–15.CrossRef
6.
go back to reference Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Relat Res. 1985;197:301–11. Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Relat Res. 1985;197:301–11.
7.
go back to reference Akita S, Fukui M, Nakagawa H, Fujii T, Akino K. Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair Regen. 2004;12:252–9.CrossRefPubMed Akita S, Fukui M, Nakagawa H, Fujii T, Akino K. Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair Regen. 2004;12:252–9.CrossRefPubMed
8.
go back to reference Borie E, Fuentes R, del Sol M, Oporto G, Engelke W. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Ann Anat. 2011;193:412–7.CrossRefPubMed Borie E, Fuentes R, del Sol M, Oporto G, Engelke W. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Ann Anat. 2011;193:412–7.CrossRefPubMed
9.
go back to reference Behnia H, Khojasteh A, Kiani MT, Khoshzaban A, Mashhadi Abbas F, Bashtar M, Dashti SG. Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:e7–15. Behnia H, Khojasteh A, Kiani MT, Khoshzaban A, Mashhadi Abbas F, Bashtar M, Dashti SG. Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:e7–15.
10.
go back to reference Wehrhan F, Amann K, Molenberg A, Lutz R, Neukam FW, Schlegel KA. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes - the osteopromotive principle revisited. Clin Oral Implants Res. 2013;24:910–20.CrossRefPubMed Wehrhan F, Amann K, Molenberg A, Lutz R, Neukam FW, Schlegel KA. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes - the osteopromotive principle revisited. Clin Oral Implants Res. 2013;24:910–20.CrossRefPubMed
11.
go back to reference Gosain AK, Santoro TD, Song LS, Capel CC, Sudhakar PV, Matloub HS. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg. 2003;112:515–27.CrossRefPubMed Gosain AK, Santoro TD, Song LS, Capel CC, Sudhakar PV, Matloub HS. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg. 2003;112:515–27.CrossRefPubMed
12.
go back to reference Cooper GM, Durham EL, Cray Jr JJ, Siegel MI, Losee JE, Mooney MP. Tissue interactions between craniosynostotic dura mater and bone. J Craniofac Surg. 2012;23:919–24.CrossRefPubMedPubMedCentral Cooper GM, Durham EL, Cray Jr JJ, Siegel MI, Losee JE, Mooney MP. Tissue interactions between craniosynostotic dura mater and bone. J Craniofac Surg. 2012;23:919–24.CrossRefPubMedPubMedCentral
13.
go back to reference Mossaz CF, Kokich VG. Redevelopment of the calvaria after partial craniectomy in growing rabbits: the effect of altering dural continuity. Acta Anat (Basel). 1981;109:321–31.CrossRef Mossaz CF, Kokich VG. Redevelopment of the calvaria after partial craniectomy in growing rabbits: the effect of altering dural continuity. Acta Anat (Basel). 1981;109:321–31.CrossRef
14.
go back to reference El Backly RM, Zaky SH, Canciani B, Saad MM, Eweida AM, Brun F, et al. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite™) for late healing of critical size rabbit calvarial defects. J Craniomaxillofac Surg. 2014;42:e70–9.CrossRefPubMed El Backly RM, Zaky SH, Canciani B, Saad MM, Eweida AM, Brun F, et al. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite™) for late healing of critical size rabbit calvarial defects. J Craniomaxillofac Surg. 2014;42:e70–9.CrossRefPubMed
15.
go back to reference Morton DB, Griffiths PH. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec. 1985;116:431–6.CrossRefPubMed Morton DB, Griffiths PH. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec. 1985;116:431–6.CrossRefPubMed
17.
go back to reference Goret-Nicaise M, Manzanares MC, Nolmans E, Bulpa P, Dhem A. Calcified tissues envolved in the onthogenesis of the human cranial vault. Anat Embryol (Berl). 1988;178:399–406.CrossRef Goret-Nicaise M, Manzanares MC, Nolmans E, Bulpa P, Dhem A. Calcified tissues envolved in the onthogenesis of the human cranial vault. Anat Embryol (Berl). 1988;178:399–406.CrossRef
18.
go back to reference Manzanares MC, Franch J, Carvalho P, Montesdeoca J, García J. The role of calcified tissues in the different stages of implant osteointegration. Dent Med Probl. 2004;41:179–91. Manzanares MC, Franch J, Carvalho P, Montesdeoca J, García J. The role of calcified tissues in the different stages of implant osteointegration. Dent Med Probl. 2004;41:179–91.
19.
go back to reference Fellows-Mayle WK, Mooney MP, Losken HW, Dechant J, Cooper GM, Burrows AM, Smith TD, Pollack IF, Siegel MI. Age-related changes in intracranial pressure in rabbits with uncorrected familial coronal suture synostosis. Cleft Palate Craniofac J. 2000;37:370–8.CrossRefPubMed Fellows-Mayle WK, Mooney MP, Losken HW, Dechant J, Cooper GM, Burrows AM, Smith TD, Pollack IF, Siegel MI. Age-related changes in intracranial pressure in rabbits with uncorrected familial coronal suture synostosis. Cleft Palate Craniofac J. 2000;37:370–8.CrossRefPubMed
20.
go back to reference Frydrychowski AF, Wszedybyl-Winklewska M, Guminski W, Przyborska A, Kaczmarek J, Winklewski PJ. Use of Near Infrared Transillumination/Back Scattering Sounding (NIR-T/BSS) to assess effects of elevated intracranial pressure on width of subarachnoid space and cerebrovascular pulsation in animals. Acta Neurobiol Exp (Wars). 2011;71:313–21. Frydrychowski AF, Wszedybyl-Winklewska M, Guminski W, Przyborska A, Kaczmarek J, Winklewski PJ. Use of Near Infrared Transillumination/Back Scattering Sounding (NIR-T/BSS) to assess effects of elevated intracranial pressure on width of subarachnoid space and cerebrovascular pulsation in animals. Acta Neurobiol Exp (Wars). 2011;71:313–21.
21.
go back to reference Trauner DA, Adams H. Effect of chain length of short-chain fatty acids on their effect on intracranial pressure in rabbits. J Neurol Neurosurg Psychiatry. 1982;45:428–30.CrossRefPubMedPubMedCentral Trauner DA, Adams H. Effect of chain length of short-chain fatty acids on their effect on intracranial pressure in rabbits. J Neurol Neurosurg Psychiatry. 1982;45:428–30.CrossRefPubMedPubMedCentral
22.
go back to reference Jeong TM, Lee JK. The efficacy of the graft materials after sinus elevation: retrospective comparative study using panoramic radiography. Maxillofac Plast Reconstr Surg. 2014;36:146-53. Jeong TM, Lee JK. The efficacy of the graft materials after sinus elevation: retrospective comparative study using panoramic radiography. Maxillofac Plast Reconstr Surg. 2014;36:146-53.
23.
go back to reference Stern A, Green J. Sinus lift procedures: an overview of current techniques. Dent Clin North Am. 2012;56:219–33.CrossRefPubMed Stern A, Green J. Sinus lift procedures: an overview of current techniques. Dent Clin North Am. 2012;56:219–33.CrossRefPubMed
24.
go back to reference Scharf KE, Lawson W, Shapiro JM, Gannon PJ. Pressure measurements in the normal and occluded rabbit maxillary sinus. Laryngoscope. 1995;105:570–4.CrossRefPubMed Scharf KE, Lawson W, Shapiro JM, Gannon PJ. Pressure measurements in the normal and occluded rabbit maxillary sinus. Laryngoscope. 1995;105:570–4.CrossRefPubMed
25.
go back to reference Eloy P, Nollevaux MC, Bertrand B. Physiologie des sinus paranasaux. EMC - Oto-rhino-laryngologie. 2005;2:185–97.CrossRef Eloy P, Nollevaux MC, Bertrand B. Physiologie des sinus paranasaux. EMC - Oto-rhino-laryngologie. 2005;2:185–97.CrossRef
26.
go back to reference Lambert F, Lecloux G, Léonard A, Sourice S, Layrolle P, Rompen E. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits. Clin Implant Dent Relat Res. 2013;15:412–26.CrossRefPubMed Lambert F, Lecloux G, Léonard A, Sourice S, Layrolle P, Rompen E. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits. Clin Implant Dent Relat Res. 2013;15:412–26.CrossRefPubMed
27.
go back to reference Scala A, Lang NP, de Carvalho CL, Pantani F, Schweikert M, Botticelli D. Sequential healing of the elevated sinus floor after applying autologous bone grafting: an experimental study in minipigs. Clin Oral Implants Res. 2015;26:419–25.CrossRefPubMed Scala A, Lang NP, de Carvalho CL, Pantani F, Schweikert M, Botticelli D. Sequential healing of the elevated sinus floor after applying autologous bone grafting: an experimental study in minipigs. Clin Oral Implants Res. 2015;26:419–25.CrossRefPubMed
28.
go back to reference Favero V, Lang NP, Canullo L, Urbizo Velez J, Bengazi F. Botticelli D5. Sinus floor elevation outcomes following perforation of the Schneiderian membrane. An experimental study in sheep. Clin Oral Implants Res. 2016;27:233–40.CrossRefPubMed Favero V, Lang NP, Canullo L, Urbizo Velez J, Bengazi F. Botticelli D5. Sinus floor elevation outcomes following perforation of the Schneiderian membrane. An experimental study in sheep. Clin Oral Implants Res. 2016;27:233–40.CrossRefPubMed
29.
go back to reference Cha JK, Lee JS, Kim MS, Choi SH, Cho KS, Jung UW. Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs. J Clin Periodontol. 2014;41:86–93.CrossRefPubMed Cha JK, Lee JS, Kim MS, Choi SH, Cho KS, Jung UW. Sinus augmentation using BMP-2 in a bovine hydroxyapatite/collagen carrier in dogs. J Clin Periodontol. 2014;41:86–93.CrossRefPubMed
30.
go back to reference Lambrechts H, De Baets E, Fieuws S, Willems G. Lip and tongue pressure in orthodontic patients. Eur J Orthod. 2010;32:466–71.CrossRefPubMed Lambrechts H, De Baets E, Fieuws S, Willems G. Lip and tongue pressure in orthodontic patients. Eur J Orthod. 2010;32:466–71.CrossRefPubMed
31.
32.
34.
go back to reference Chikly B, Quaghebeur J. Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013;17:344–54.CrossRefPubMed Chikly B, Quaghebeur J. Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013;17:344–54.CrossRefPubMed
35.
go back to reference Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. Sinus floor augmentation surgery using autologous bone grafts from various donor sites: a meta-analysis of the total bone volume. Tissue Eng Part B Rev. 2010;16:295–303.CrossRefPubMed Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. Sinus floor augmentation surgery using autologous bone grafts from various donor sites: a meta-analysis of the total bone volume. Tissue Eng Part B Rev. 2010;16:295–303.CrossRefPubMed
36.
go back to reference Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013;24:576–85.CrossRefPubMed Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013;24:576–85.CrossRefPubMed
37.
go back to reference Tosta M, Cortes AR, Corrêa L, Pinto Ddos Jr S, Tumenas I, Katchburian E. Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Clin Oral Implants Res. 2013;24:866–70.CrossRefPubMed Tosta M, Cortes AR, Corrêa L, Pinto Ddos Jr S, Tumenas I, Katchburian E. Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Clin Oral Implants Res. 2013;24:866–70.CrossRefPubMed
38.
go back to reference Handschel J, Simonowska M, Naujoks C, Depprich RA, Ommerborn MA, Meyer U, Kübler NR. A histomorphometric meta-analysis of sinus elevation with various grafting materials. Head Face Med. 2009;11:5–12. Handschel J, Simonowska M, Naujoks C, Depprich RA, Ommerborn MA, Meyer U, Kübler NR. A histomorphometric meta-analysis of sinus elevation with various grafting materials. Head Face Med. 2009;11:5–12.
39.
go back to reference Lambert F, Léonard A, Drion P, Sourice S, Layrolle P, Rompen E. Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Implants Res. 2011;22:538–45.CrossRefPubMed Lambert F, Léonard A, Drion P, Sourice S, Layrolle P, Rompen E. Influence of space-filling materials in subantral bone augmentation: blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clin Oral Implants Res. 2011;22:538–45.CrossRefPubMed
40.
go back to reference Jensen T, Schou S, Svendsen PA, Forman JL, Gundersen HJ, Terheyden H, Holmstrup P. Volumetric changes of the graft after maxillary sinus floor augmentation with Bio-Oss and autogenous bone in different ratios: a radiographic study in minipigs. Clin Oral Implants Res. 2012;23:902–10.CrossRefPubMed Jensen T, Schou S, Svendsen PA, Forman JL, Gundersen HJ, Terheyden H, Holmstrup P. Volumetric changes of the graft after maxillary sinus floor augmentation with Bio-Oss and autogenous bone in different ratios: a radiographic study in minipigs. Clin Oral Implants Res. 2012;23:902–10.CrossRefPubMed
41.
go back to reference LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res. 1988;2:164–80.CrossRefPubMed LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res. 1988;2:164–80.CrossRefPubMed
42.
go back to reference Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - a review. Acta Biomater. 2014;10:557–79.CrossRefPubMed Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - a review. Acta Biomater. 2014;10:557–79.CrossRefPubMed
43.
go back to reference Park YJ, Choi KH, Hahn BD, Lee YC, Song JY, Park YT. New bone formation between bare titanium surface and hydroxyapatite coating by the aerosol deposition technique in the nasal mucosal penetration model. J Craniofac Surg. 2013;24:632–5.CrossRefPubMed Park YJ, Choi KH, Hahn BD, Lee YC, Song JY, Park YT. New bone formation between bare titanium surface and hydroxyapatite coating by the aerosol deposition technique in the nasal mucosal penetration model. J Craniofac Surg. 2013;24:632–5.CrossRefPubMed
44.
go back to reference Fujita R, Yokoyama A, Nodasaka Y, Kohgo T, Kawasaki T. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Tissue Cell. 2003;35:427–40.CrossRefPubMed Fujita R, Yokoyama A, Nodasaka Y, Kohgo T, Kawasaki T. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Tissue Cell. 2003;35:427–40.CrossRefPubMed
Metadata
Title
Novel use of cranial epidural space in rabbits as an animal model to investigate bone volume augmentation potential of different bone graft substitutes
Authors
Ivan Valdivia-Gandur
Wilfried Engelke
Víctor Beltrán
Eduardo Borie
Ramón Fuentes
María Cristina Manzanares-Céspedes
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Head & Face Medicine / Issue 1/2016
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-016-0131-z

Other articles of this Issue 1/2016

Head & Face Medicine 1/2016 Go to the issue