Skip to main content
Top
Published in: Journal of Ethnobiology and Ethnomedicine 1/2021

Open Access 01-12-2021 | Research

Farmers’ perceptions of navy bean (Phaseolus vulgaris L.) production constraints, preferred traits and farming systems and their implications on bean breeding: a case study from South East Lowveld region of Zimbabwe

Authors: Bruce Mutari, Julia Sibiya, Eileen Bogweh Nchanji, Kennedy Simango, Edmore Gasura

Published in: Journal of Ethnobiology and Ethnomedicine | Issue 1/2021

Login to get access

Abstract

Background

Navy bean is an important legume crop in Zimbabwe. Although its production in Zimbabwe is limited by multiple constraints including biotic, abiotic and socio-economic, there is no documented evidence. Thus, this study aimed at identifying farmers’ production constraints, preferred traits and cultivars of navy bean, and strategies used to mitigate some of these constraints.

Methods

A Participatory Rural Appraisal approach involving transect walks, focus group discussions (FGDs), and formal surveys with semi-structured questionnaires was conducted in four villages of the Lowveld region of Zimbabwe. In each of the four villages, two FGDs (one for men and one for women) were conducted. A total of 176 (75 males and 101 females) navy bean-growing households were interviewed. Data from household interviews and FGDs was analysed using the Statistical Package for Social Scientists computer package.

Results

The most important constraints to navy bean production were drought stress (Females—86%, Males—73%), heat stress (Females—58%, Males—55%), power outages (Females—46%, Males—54%), poor soil fertility (Females—32%; Males—33%) and susceptibility to pod shattering (Females—32%, Males—43%). Mitigation strategies included mulching (18%), ridges (12%), reduced acreage (11%), and cultivating to retain more soil moisture (11%) for drought stress, while irrigating at night (32%), and adjusting planting dates (29%) were used to manage heat stress. Farmer-preferred traits included tolerance to drought and heat, early maturing varieties and disease resistance. Marketing constraints included non-payment for produce in hard currency, lack of diversity in terms of off-takers, high inflation, low grain producer price, delayed payment and breach of contract by contractors.

Conclusion

There will be increased adoption of improved navy bean cultivars if breeding programs address the aforementioned constraints and consider farmer-preferred traits when developing new cultivars. Breeders should work closely with extension officers to ensure that cultivars released are cultivated with appropriate agronomic packages for increased productivity and high adoption.
Footnotes
1
Head Research & Development at Cairns Foods Limited (One of the biggest navy bean canning companies)
 
2
Agricultural Extension Supervisor for Nenhowe, Gudyanga, Nyanyadzi, Chakohwa and Tonhorai villages
 
3
Dry Bean Breeder at Agricultural Research Council, South Africa
 
Literature
2.
go back to reference Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol. 2013;4(35):1–20. Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol. 2013;4(35):1–20.
3.
go back to reference Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L, Papa R. Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E, editors. Genomics of Plant Genetic Resources. Switzerland: Springer; 2014. p. 483–507.CrossRef Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L, Papa R. Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E, editors. Genomics of Plant Genetic Resources. Switzerland: Springer; 2014. p. 483–507.CrossRef
4.
go back to reference Beebe SE, Rao IM, Devi MJ, Polania J. Common beans, biodiversity, and multiple stresses: challenges of drought resistance in tropical soils. Crop Pasture Sci. 2014;65:667–75.CrossRef Beebe SE, Rao IM, Devi MJ, Polania J. Common beans, biodiversity, and multiple stresses: challenges of drought resistance in tropical soils. Crop Pasture Sci. 2014;65:667–75.CrossRef
7.
go back to reference Crop Breeding Institute. (CBI). Harare, Zimbabwe. Release proposal for a canning bean line: Protea; 2018. Crop Breeding Institute. (CBI). Harare, Zimbabwe. Release proposal for a canning bean line: Protea; 2018.
8.
go back to reference Crop Breeding Institute. (CBI). Harare, Zimbabwe. Release proposal for a canning bean line: Camellia; 2019. Crop Breeding Institute. (CBI). Harare, Zimbabwe. Release proposal for a canning bean line: Camellia; 2019.
9.
go back to reference Chandra G. Participatory rural appraisal: issues and tools for social science research in inland fisheries. Central Inland Fisheries Research Institute: Barrackpore; 2010. Chandra G. Participatory rural appraisal: issues and tools for social science research in inland fisheries. Central Inland Fisheries Research Institute: Barrackpore; 2010.
10.
go back to reference Abady S, Shimelis H, Janila P. Farmers’ perceived constraints to groundnut production, their variety choice and preferred traits in eastern Ethiopia: implications for drought-tolerance breeding. J Crop Improv. 2019;33(4):505–21.CrossRef Abady S, Shimelis H, Janila P. Farmers’ perceived constraints to groundnut production, their variety choice and preferred traits in eastern Ethiopia: implications for drought-tolerance breeding. J Crop Improv. 2019;33(4):505–21.CrossRef
11.
go back to reference Abakemal D, Shimelis H, Derera J, Laing M. Farmers’ perceptions of maize production systems and breeding priorities, and their implications for the adoption of new varieties in selected areas of the highland agro-ecology of Ethiopia. J Agric Sci. 2013;5(11):159–72. Abakemal D, Shimelis H, Derera J, Laing M. Farmers’ perceptions of maize production systems and breeding priorities, and their implications for the adoption of new varieties in selected areas of the highland agro-ecology of Ethiopia. J Agric Sci. 2013;5(11):159–72.
12.
go back to reference Daudi H, Shimelis H, Laing M, Okori P, Mponda O. Groundnut production constraints, farming systems, and farmer-preferred traits in Tanzania. J Crop Improv. 2018;32:812–28.CrossRef Daudi H, Shimelis H, Laing M, Okori P, Mponda O. Groundnut production constraints, farming systems, and farmer-preferred traits in Tanzania. J Crop Improv. 2018;32:812–28.CrossRef
13.
go back to reference Derera J, Tongoona P, Langyintuo A, Laing MD, Vivek B. Farmers’ perceptions on maize cultivars in the marginal eastern belt of Zimbabwe and their implications for breeding. Afr Crop. 2006;14(1):1–15. Derera J, Tongoona P, Langyintuo A, Laing MD, Vivek B. Farmers’ perceptions on maize cultivars in the marginal eastern belt of Zimbabwe and their implications for breeding. Afr Crop. 2006;14(1):1–15.
14.
go back to reference Deressa A, Admasu H, Seboka B, Nigussie M. Participatory decentralized secondary improved maize (Zea mays L.) seed multiplication in the central Rift Valley of Ethiopia. In: Friesen DK, AFE P, editors. Integrated Approaches to Higher Maize Productivity in the New Millennium: Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference. Nairobi: International Maize and Wheat Improvement Center (CIMMYT) and Kenya Agricultural Research Institute (KARI); 2002. p. 423–7. Deressa A, Admasu H, Seboka B, Nigussie M. Participatory decentralized secondary improved maize (Zea mays L.) seed multiplication in the central Rift Valley of Ethiopia. In: Friesen DK, AFE P, editors. Integrated Approaches to Higher Maize Productivity in the New Millennium: Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference. Nairobi: International Maize and Wheat Improvement Center (CIMMYT) and Kenya Agricultural Research Institute (KARI); 2002. p. 423–7.
15.
go back to reference Nduwumuremyi A, Melis A, Shanahan P, Asiimwe T. Participatory appraisal of preferred traits, production constraints, and postharvest challenges for cassava farmers in Rwanda. Food Secur. 2016;8(2):375–88.CrossRef Nduwumuremyi A, Melis A, Shanahan P, Asiimwe T. Participatory appraisal of preferred traits, production constraints, and postharvest challenges for cassava farmers in Rwanda. Food Secur. 2016;8(2):375–88.CrossRef
16.
go back to reference Ngailo S, Shimelis HA, Sibiya J, Mtunda K. Assessment of sweet potato farming systems, production constraints and breeding priorities in eastern Tanzania. S Afr J Plant Soil. 2016;33(2):105–12.CrossRef Ngailo S, Shimelis HA, Sibiya J, Mtunda K. Assessment of sweet potato farming systems, production constraints and breeding priorities in eastern Tanzania. S Afr J Plant Soil. 2016;33(2):105–12.CrossRef
17.
go back to reference Sheikh FA, Sofi PA, Khan MA, Sofi NR, Wani SH, Bhat MA. Participatory rural appraisal and farmers’ perception about common bean varieties in temperate Kashmir. J Appl Nat Sci. 2017;9(2):1256–63.CrossRef Sheikh FA, Sofi PA, Khan MA, Sofi NR, Wani SH, Bhat MA. Participatory rural appraisal and farmers’ perception about common bean varieties in temperate Kashmir. J Appl Nat Sci. 2017;9(2):1256–63.CrossRef
18.
go back to reference Ceccarelli S, Grando S, Singh M, Michael M, Shikho A, Al Issa M, et al. A methodological study on participatory barley breeding II. Response to selection. Euphytica. 2003;133(2):185–200.CrossRef Ceccarelli S, Grando S, Singh M, Michael M, Shikho A, Al Issa M, et al. A methodological study on participatory barley breeding II. Response to selection. Euphytica. 2003;133(2):185–200.CrossRef
19.
go back to reference Morris ML, Bellon MR. Participatory plant breeding research: opportunities and challenges for the international crop improvement system. Euphytica. 2004;136(1):21–35.CrossRef Morris ML, Bellon MR. Participatory plant breeding research: opportunities and challenges for the international crop improvement system. Euphytica. 2004;136(1):21–35.CrossRef
20.
go back to reference Danial D, Parlevliet J, Almekinders C, Thiele G. Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica. 2007;153(3):385–96.CrossRef Danial D, Parlevliet J, Almekinders C, Thiele G. Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica. 2007;153(3):385–96.CrossRef
21.
go back to reference Mukankusi CM. Improving resistance to fusarium root rot [Fusarium solani (Mart.) Sacc. f. sp. phaseoli (Burkholder) W.C. Snyder & H.N. Hans.] in common bean (Phaseolus vulgaris L.). PhD Thesis, University of KwaZulu-Natal; 2008. Mukankusi CM. Improving resistance to fusarium root rot [Fusarium solani (Mart.) Sacc. f. sp. phaseoli (Burkholder) W.C. Snyder & H.N. Hans.] in common bean (Phaseolus vulgaris L.). PhD Thesis, University of KwaZulu-Natal; 2008.
22.
go back to reference Ojwang PPO, Melis R, Songa JM, Githiri M, Bett C. Participatory plant breeding approach for host plant resistance to bean fly in common bean under semi-arid Kenya conditions. Euphytica. 2009;170(3):383–93.CrossRef Ojwang PPO, Melis R, Songa JM, Githiri M, Bett C. Participatory plant breeding approach for host plant resistance to bean fly in common bean under semi-arid Kenya conditions. Euphytica. 2009;170(3):383–93.CrossRef
23.
go back to reference Aguilar A, Carranza E, Goldstein M, Kilic T, Oseni G. Decomposition of gender differentials in agricultural productivity in Ethiopia. Agric Econ. 2015;46(3):311–34.CrossRef Aguilar A, Carranza E, Goldstein M, Kilic T, Oseni G. Decomposition of gender differentials in agricultural productivity in Ethiopia. Agric Econ. 2015;46(3):311–34.CrossRef
24.
go back to reference Asfaw A, Almekinders CJM, Blair MW, Struik PC. Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed. 2012;131(1):125–34.CrossRef Asfaw A, Almekinders CJM, Blair MW, Struik PC. Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed. 2012;131(1):125–34.CrossRef
25.
go back to reference Assefa T, Sperling L, Dagne B, Argaw W, Tessema D, Beebe S. Participatory plant breeding with traders and farmers for white pea bean in Ethiopia. J Agric Educ Ext. 2014;20(5):497–512.CrossRef Assefa T, Sperling L, Dagne B, Argaw W, Tessema D, Beebe S. Participatory plant breeding with traders and farmers for white pea bean in Ethiopia. J Agric Educ Ext. 2014;20(5):497–512.CrossRef
26.
go back to reference Changaya AG. Development of high yielding pigeon pea (Cajanus cajan) germplasm with resistance to Fusarium wilt (Fusarium udum) in Malawi. PhD Thesis, University of KwaZulu Natal; 2007. Changaya AG. Development of high yielding pigeon pea (Cajanus cajan) germplasm with resistance to Fusarium wilt (Fusarium udum) in Malawi. PhD Thesis, University of KwaZulu Natal; 2007.
27.
go back to reference Lelo F, Ayieko J, Makenzi P, Muhia N, Njeremani D, Muiruri H, Omollo J, Ochola W. A PRA field handbook for participatory rural appraisal practitioners. Kenya: Ergerton University; 1995. Lelo F, Ayieko J, Makenzi P, Muhia N, Njeremani D, Muiruri H, Omollo J, Ochola W. A PRA field handbook for participatory rural appraisal practitioners. Kenya: Ergerton University; 1995.
28.
go back to reference Statistical Package for the Social Sciences. (SPSS). Chicago, United States of America. (SPSS). Statistical Package for the Social Sciences for Windows. Release 21.0; 2012. Statistical Package for the Social Sciences. (SPSS). Chicago, United States of America. (SPSS). Statistical Package for the Social Sciences for Windows. Release 21.0; 2012.
29.
go back to reference Banziger M, de Meyer J. Collaborative maize variety development for stress-prone environments in southern Africa. In: Cleveland DA, Soleri D, editors. Farmers, Scientists, and Plant Breeding: Integrating Knowledge and Practice. New York: CAB Publishing; 2002. p. 269.CrossRef Banziger M, de Meyer J. Collaborative maize variety development for stress-prone environments in southern Africa. In: Cleveland DA, Soleri D, editors. Farmers, Scientists, and Plant Breeding: Integrating Knowledge and Practice. New York: CAB Publishing; 2002. p. 269.CrossRef
31.
go back to reference Chidoko C, Zhou S. Impact of agricultural development of youth employment in Zimbabwe: the case of Masvingo Province. Russ J Agric. 2012;11(11):24–7. Chidoko C, Zhou S. Impact of agricultural development of youth employment in Zimbabwe: the case of Masvingo Province. Russ J Agric. 2012;11(11):24–7.
32.
go back to reference Nassary EK, Baijukya F, Ndakidemi PA. Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. European J Agron. 2020;113:1–10.CrossRef Nassary EK, Baijukya F, Ndakidemi PA. Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. European J Agron. 2020;113:1–10.CrossRef
33.
go back to reference Njoki NWB. Breeding for durable resistance to angular leaf spot (Pseudocercospora griseola) in common bean (Phaseolus vulgaris L.) in Kenya. PhD Thesis, University of KwaZulu-Natal; 2013. Njoki NWB. Breeding for durable resistance to angular leaf spot (Pseudocercospora griseola) in common bean (Phaseolus vulgaris L.) in Kenya. PhD Thesis, University of KwaZulu-Natal; 2013.
34.
go back to reference Fageria NK, Baligar VC, Jones CA. Common bean and cowpea. In: Pessarakli M, editor. Growth and mineral nutrition of field crop. 3rd ed. Boca Raton: CRC Press Taylor and Francis Group; 2010. p. 391–414.CrossRef Fageria NK, Baligar VC, Jones CA. Common bean and cowpea. In: Pessarakli M, editor. Growth and mineral nutrition of field crop. 3rd ed. Boca Raton: CRC Press Taylor and Francis Group; 2010. p. 391–414.CrossRef
35.
go back to reference Mongi R, Tongoona P, Shimelis H, Sibiya J. Appraisal of common bean farming systems under angular leaf spot disease prone environments of the Southern Highlands of Tanzania. Indian J Agric Sci. 2016;50(5):428–33. Mongi R, Tongoona P, Shimelis H, Sibiya J. Appraisal of common bean farming systems under angular leaf spot disease prone environments of the Southern Highlands of Tanzania. Indian J Agric Sci. 2016;50(5):428–33.
36.
go back to reference Chemining’wa GN, Kitonyo OM, Nderitu JH. Status, challenges and marketing opportunities for canning navy bean in Kenya. African J Food Agric Nutr Dev. 2014;14(5):2072–87. Chemining’wa GN, Kitonyo OM, Nderitu JH. Status, challenges and marketing opportunities for canning navy bean in Kenya. African J Food Agric Nutr Dev. 2014;14(5):2072–87.
37.
go back to reference Beebe SE, Rao IM, Blair M, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. In: Ribaut JM, Monneveux P, editors. Drought Phenotyping in Crops: From Theory to Practice. Mexico: Frontiers; 2010. p. 311–34. Beebe SE, Rao IM, Blair M, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. In: Ribaut JM, Monneveux P, editors. Drought Phenotyping in Crops: From Theory to Practice. Mexico: Frontiers; 2010. p. 311–34.
38.
go back to reference Singh SP. Broadening the genetic base of common bean cultivars: a review. Crop Sci. 2001;41(6):1659–75.CrossRef Singh SP. Broadening the genetic base of common bean cultivars: a review. Crop Sci. 2001;41(6):1659–75.CrossRef
39.
go back to reference Thung M, Rao IM. Integrated management of abiotic stresses. In: Singh SP, editor. Common bean improvement in the twenty-first century. Dordrecht: Kluwer Academic Publishers; 1999. p. 331–70.CrossRef Thung M, Rao IM. Integrated management of abiotic stresses. In: Singh SP, editor. Common bean improvement in the twenty-first century. Dordrecht: Kluwer Academic Publishers; 1999. p. 331–70.CrossRef
40.
go back to reference Government of Zimbabwe. (GOZ). Harare, Zimbabwe. Agricultural Sector Gender Assessment Report; 2013. Government of Zimbabwe. (GOZ). Harare, Zimbabwe. Agricultural Sector Gender Assessment Report; 2013.
41.
go back to reference Setimela PS, Monyo E, Banziger M. Successful community-based seed production strategies. Mexico: International Maize and Wheat Improvement Center; 2004. Setimela PS, Monyo E, Banziger M. Successful community-based seed production strategies. Mexico: International Maize and Wheat Improvement Center; 2004.
42.
go back to reference Vanlauwe B, Coe R, Giller KE. Beyond averages: new approaches to understand heterogeneity and risk of technology success or failure in smallholder farming. Exp Agric. 2016;55:84–106.CrossRef Vanlauwe B, Coe R, Giller KE. Beyond averages: new approaches to understand heterogeneity and risk of technology success or failure in smallholder farming. Exp Agric. 2016;55:84–106.CrossRef
43.
go back to reference Balcha A, Tigabu R. Participatory varietal selection of common bean (Phaseolus vulgaris L.) in Wolaita, Ethiopia. Asian J Crop Sci. 2015;7(4):295–300.CrossRef Balcha A, Tigabu R. Participatory varietal selection of common bean (Phaseolus vulgaris L.) in Wolaita, Ethiopia. Asian J Crop Sci. 2015;7(4):295–300.CrossRef
44.
go back to reference Assefa T, Abebe G, Fininsa C, Tesso B, Al-Tawaha AM. Participatory bean breeding with women and small holder farmers in Eastern Ethiopia. World J Agric Res. 2005;1(1):28–35. Assefa T, Abebe G, Fininsa C, Tesso B, Al-Tawaha AM. Participatory bean breeding with women and small holder farmers in Eastern Ethiopia. World J Agric Res. 2005;1(1):28–35.
45.
go back to reference Umar G. Participatory Varietal selection in Common bean in Kulgam and Shopian districts of Kashmir using modified mother trial approach. Msc Dissertation, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir; 2015. Umar G. Participatory Varietal selection in Common bean in Kulgam and Shopian districts of Kashmir using modified mother trial approach. Msc Dissertation, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir; 2015.
46.
go back to reference Iqbal R, Raza MAS, Valipour M, Saleem MF, Zaheer MS, Ahmad S, Toleikiene M, Haider I, Aslam MU, Nazar MA. Potential agricultural and environmental benefits of mulches-a review. Bull Natl Res Cent. 2020;44(75):1–16. Iqbal R, Raza MAS, Valipour M, Saleem MF, Zaheer MS, Ahmad S, Toleikiene M, Haider I, Aslam MU, Nazar MA. Potential agricultural and environmental benefits of mulches-a review. Bull Natl Res Cent. 2020;44(75):1–16.
47.
go back to reference Kader MA, Singha A, Begum MA, Jewel A, Khan FH, Khan NI. Mulching as water-saving technique in dry land agriculture. Bull Natl Res Cent. 2019;43(147):1–6. Kader MA, Singha A, Begum MA, Jewel A, Khan FH, Khan NI. Mulching as water-saving technique in dry land agriculture. Bull Natl Res Cent. 2019;43(147):1–6.
48.
go back to reference Telkar SG, Kant K, Pratap S, Solanki S. Effect of mulching on soil moisture conservation. Biomolecule Reports. 2017;ISSN:2456-8759. Telkar SG, Kant K, Pratap S, Solanki S. Effect of mulching on soil moisture conservation. Biomolecule Reports. 2017;ISSN:2456-8759.
49.
go back to reference Bodner G, Nakhforoosh A, Kaul HP. Management of crop water under drought: a review. Agron Sustain Dev. 2015;35(2):401–42.CrossRef Bodner G, Nakhforoosh A, Kaul HP. Management of crop water under drought: a review. Agron Sustain Dev. 2015;35(2):401–42.CrossRef
50.
go back to reference Lamont WJ. Plastics: modifying the microclimate for the production of vegetable crops. Horttechnology. 2005;15(3):477–81.CrossRef Lamont WJ. Plastics: modifying the microclimate for the production of vegetable crops. Horttechnology. 2005;15(3):477–81.CrossRef
51.
go back to reference Long CE, Thorne BL, Breisch NL, Douglass LW. Effect of organic and inorganic landscape mulches on subterranean termite (Isoptera: Rhinotermitidae) foraging activity. Environ Entomol. 2001;30(5):832–6.CrossRef Long CE, Thorne BL, Breisch NL, Douglass LW. Effect of organic and inorganic landscape mulches on subterranean termite (Isoptera: Rhinotermitidae) foraging activity. Environ Entomol. 2001;30(5):832–6.CrossRef
52.
go back to reference Nyagumbo I, Munamati M, Mutsamba EF, Thierfelder C, Cumbane A, Dias D. The effects of tillage, mulching and termite control strategies on termite activity and maize yield under conservation agriculture in Mozambique. Crop Prot. 2015;78:54–62.CrossRef Nyagumbo I, Munamati M, Mutsamba EF, Thierfelder C, Cumbane A, Dias D. The effects of tillage, mulching and termite control strategies on termite activity and maize yield under conservation agriculture in Mozambique. Crop Prot. 2015;78:54–62.CrossRef
53.
go back to reference Mahmoud MA, El-Bably AZ. Crop water requirements and irrigation efficiencies in Egypt. In: Negm AM, editor. Conventional Water Resources and Agriculture in Egypt. Switzerland: Springer Nature Switzerland; 2019. p. 471–88. Mahmoud MA, El-Bably AZ. Crop water requirements and irrigation efficiencies in Egypt. In: Negm AM, editor. Conventional Water Resources and Agriculture in Egypt. Switzerland: Springer Nature Switzerland; 2019. p. 471–88.
54.
go back to reference Dong X, Xu W, Zhang Y, Leskovar DI. Effect of irrigation timing on root zone soil temperature, root growth and grain yield and chemical composition in corn. Agron. 2016;6(2):34.CrossRef Dong X, Xu W, Zhang Y, Leskovar DI. Effect of irrigation timing on root zone soil temperature, root growth and grain yield and chemical composition in corn. Agron. 2016;6(2):34.CrossRef
55.
go back to reference Leslie S. Cultivation systems for single horses and teams. In: Goodman M, editor. The new hoarse powered farm: Tools and systems for the small-scale sustainable market grower. United States of America: Chealse Green Publishing; 2013. p. 218. Leslie S. Cultivation systems for single horses and teams. In: Goodman M, editor. The new hoarse powered farm: Tools and systems for the small-scale sustainable market grower. United States of America: Chealse Green Publishing; 2013. p. 218.
56.
go back to reference Akter N, Islam MK. Heat stress effects and management in wheat: a review. Agron Sustain Dev. 2017;37:1–17.CrossRef Akter N, Islam MK. Heat stress effects and management in wheat: a review. Agron Sustain Dev. 2017;37:1–17.CrossRef
57.
go back to reference Asseng S, Foster I, Turner NC. The impact of temperature variability on wheat yields. Glob Change Biol. 2011;17(2):997–1012.CrossRef Asseng S, Foster I, Turner NC. The impact of temperature variability on wheat yields. Glob Change Biol. 2011;17(2):997–1012.CrossRef
58.
go back to reference Chapman SC, Chakraborty S, Dreccer MF, Howden SC. Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci. 2012;63(3):251–68.CrossRef Chapman SC, Chakraborty S, Dreccer MF, Howden SC. Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci. 2012;63(3):251–68.CrossRef
59.
go back to reference Sandhu SS, Singh J, Kaur P, Gill KK. Heat stress in field crops: impact and management approaches. In: Bal S, Mukherjee J, Choudhury B, Dhawan A, editors. Advances in Crop Environment Interaction. India: Springer Nature Singapore; 2018. p. 181–204.CrossRef Sandhu SS, Singh J, Kaur P, Gill KK. Heat stress in field crops: impact and management approaches. In: Bal S, Mukherjee J, Choudhury B, Dhawan A, editors. Advances in Crop Environment Interaction. India: Springer Nature Singapore; 2018. p. 181–204.CrossRef
63.
go back to reference Loggerenberg MV. Development and application of a small-scale canning procedure for the evaluation of small white beans (Phaseolus vulgaris). PhD Thesis, University of the Free State; 2004. Loggerenberg MV. Development and application of a small-scale canning procedure for the evaluation of small white beans (Phaseolus vulgaris). PhD Thesis, University of the Free State; 2004.
Metadata
Title
Farmers’ perceptions of navy bean (Phaseolus vulgaris L.) production constraints, preferred traits and farming systems and their implications on bean breeding: a case study from South East Lowveld region of Zimbabwe
Authors
Bruce Mutari
Julia Sibiya
Eileen Bogweh Nchanji
Kennedy Simango
Edmore Gasura
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Ethnobiology and Ethnomedicine / Issue 1/2021
Electronic ISSN: 1746-4269
DOI
https://doi.org/10.1186/s13002-021-00442-3

Other articles of this Issue 1/2021

Journal of Ethnobiology and Ethnomedicine 1/2021 Go to the issue