Skip to main content
Top
Published in: Diagnostic Pathology 1/2016

Open Access 01-12-2016 | Case Report

Abnormal villous morphology mimicking a hydatidiform mole associated with paternal trisomy of chromosomes 3,7,8 and unipaternal disomy of chromosome 11

Authors: Neil J Sebire, Philippa C May, Baljeet Kaur, Michael J Seckl, Rosemary A Fisher

Published in: Diagnostic Pathology | Issue 1/2016

Login to get access

Abstract

Background

Pregnancies affected by non-molar chromosomal abnormality may sometimes demonstrate abnormal chorionic villous morphology that is similar to partial hydatidiform mole. Determination of the underlying aetiology may be difficult in such cases.

Case Presentation

This report describes a case referred to the regional trophoblastic disease unit as a possible hydatidiform mole that demonstrated both villous dysmorphology and abnormal p57KIP2 expression. Molecular genotyping revealed that while most chromosomes in the villous tissue were diploid and biparental, chromosomes 3, 7 and 8 were trisomic with an additional paternally derived chromosome. In contrast chromosome 11 showed uniparental disomy of paternal origin a situation more usually associated with complete hydatidiform moles. This unusual case highlights that exceptions may occur to the general rules of both histological morphology and immunoprofile, and that these can be resolved by detailed molecular genetic investigations.

Conclusion

The findings confirm that trisomic pregnancies may demonstrate morphological villous features similar to hydatidiform mole, and that loss of p57KIP2 expression occurs due to an absence of maternally transcribed genes on chromosome 11 and can therefore be independent of androgenetic complete hydatidiform mole.
Literature
1.
go back to reference Hoffner L, Surti U. The genetics of gestational trophoblastic disease: a rare complication of pregnancy. Cancer Genet. 2012;205:63–77.CrossRefPubMed Hoffner L, Surti U. The genetics of gestational trophoblastic disease: a rare complication of pregnancy. Cancer Genet. 2012;205:63–77.CrossRefPubMed
2.
go back to reference Lipata F, Parkash V, Talmor M, Bell S, Chen S, Maric V, et al. Precise DNA genotyping diagnosis of hydatidiform mole. Obstet Gynecol. 2010;115:784–94.CrossRefPubMed Lipata F, Parkash V, Talmor M, Bell S, Chen S, Maric V, et al. Precise DNA genotyping diagnosis of hydatidiform mole. Obstet Gynecol. 2010;115:784–94.CrossRefPubMed
3.
go back to reference Banet N, DeScipio C, Murphy KM, Beierl K, Adams E, Vang R, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014;27:238–54.CrossRefPubMed Banet N, DeScipio C, Murphy KM, Beierl K, Adams E, Vang R, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014;27:238–54.CrossRefPubMed
4.
go back to reference Fisher RA, Tommasi A, Short D, Kaur B, Seckl MJ, Sebire NJ. Clinical utility of selective molecular genotyping for diagnosis of partial hydatidiform mole; retrospective study from a regional trophoblastic disease unit. J Clin Pathol. 2014;67:980–4.CrossRefPubMed Fisher RA, Tommasi A, Short D, Kaur B, Seckl MJ, Sebire NJ. Clinical utility of selective molecular genotyping for diagnosis of partial hydatidiform mole; retrospective study from a regional trophoblastic disease unit. J Clin Pathol. 2014;67:980–4.CrossRefPubMed
5.
go back to reference Castrillon DH, Sun D, Weremowicz S, Fisher RA, Crum CP, Genest DR. Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Amer J Surg Pathol. 2001;25:1225–30.CrossRef Castrillon DH, Sun D, Weremowicz S, Fisher RA, Crum CP, Genest DR. Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Amer J Surg Pathol. 2001;25:1225–30.CrossRef
6.
go back to reference Sebire NJ, Fisher RA, Rees HC. Histopathological diagnosis of partial and complete hydatidiform mole in the first trimester of pregnancy. Pediatr Dev Pathol. 2003;6:69–77.CrossRefPubMed Sebire NJ, Fisher RA, Rees HC. Histopathological diagnosis of partial and complete hydatidiform mole in the first trimester of pregnancy. Pediatr Dev Pathol. 2003;6:69–77.CrossRefPubMed
7.
go back to reference Sebire NJ, Makrydimas G, Agnantis NJ, Zagorianakou N, Rees H, Fisher RA. Updated diagnostic criteria for partial and complete hydatidiform moles in early pregnancy. Anticancer Res. 2003;23:1723–8.PubMed Sebire NJ, Makrydimas G, Agnantis NJ, Zagorianakou N, Rees H, Fisher RA. Updated diagnostic criteria for partial and complete hydatidiform moles in early pregnancy. Anticancer Res. 2003;23:1723–8.PubMed
8.
go back to reference Sebire NJ. Histopathological diagnosis of hydatidiform mole: contemporary features and clinical implications. Fetal Pediatr Pathol. 2010;29:1–16.CrossRefPubMed Sebire NJ. Histopathological diagnosis of hydatidiform mole: contemporary features and clinical implications. Fetal Pediatr Pathol. 2010;29:1–16.CrossRefPubMed
10.
go back to reference Buza N, Hui P. Partial hydatidiform mole: histologic parameters in correlation with DNA genotyping. Int J Gynecol Pathol. 2013;32:307–15.CrossRefPubMed Buza N, Hui P. Partial hydatidiform mole: histologic parameters in correlation with DNA genotyping. Int J Gynecol Pathol. 2013;32:307–15.CrossRefPubMed
11.
go back to reference Furtado LV, Paxton CN, Jama MA, Tripp SR, Wilson AR, Lyon E, et al. Diagnostic utility of microsatellite genotyping for molar pregnancy testing. Arch Pathol Lab Med. 2013;137:55–63.CrossRefPubMed Furtado LV, Paxton CN, Jama MA, Tripp SR, Wilson AR, Lyon E, et al. Diagnostic utility of microsatellite genotyping for molar pregnancy testing. Arch Pathol Lab Med. 2013;137:55–63.CrossRefPubMed
12.
go back to reference Fisher RA, Nucci MR, Thaker HM, Weremowicz S, Genest DR, Castrillon DH. Complete hydatidiform mole retaining a chromosome 11 of maternal origin: molecular genetic analysis of a case. Mod Pathol. 2004;17:1155–60.CrossRefPubMed Fisher RA, Nucci MR, Thaker HM, Weremowicz S, Genest DR, Castrillon DH. Complete hydatidiform mole retaining a chromosome 11 of maternal origin: molecular genetic analysis of a case. Mod Pathol. 2004;17:1155–60.CrossRefPubMed
13.
go back to reference McConnell TG, Norris-Kirby A, Hagenkord JM, Ronnett BM, Murphy KM. Complete hydatidiform mole with retained maternal chromosomes 6 and 11. Am J Surg Pathol. 2009;33:1409–15.CrossRefPubMed McConnell TG, Norris-Kirby A, Hagenkord JM, Ronnett BM, Murphy KM. Complete hydatidiform mole with retained maternal chromosomes 6 and 11. Am J Surg Pathol. 2009;33:1409–15.CrossRefPubMed
14.
go back to reference DeScipio C, Haley L, Beierl K, Pandit AP, Murphy KM, Ronnett BM. Diandric triploid hydatidiform mole with loss of maternal chromosome 11. Am J Surg Pathol. 2011;35:1586–91.CrossRefPubMed DeScipio C, Haley L, Beierl K, Pandit AP, Murphy KM, Ronnett BM. Diandric triploid hydatidiform mole with loss of maternal chromosome 11. Am J Surg Pathol. 2011;35:1586–91.CrossRefPubMed
15.
go back to reference Hoffner L, Parks WT, Swerdlow SH, Carson JC, Surti U. Simultaneous detection of imprinted gene expression (p57(KIP2)) and molecular cytogenetics (FICTION) in the evaluation of molar pregnancies. J Reprod Med. 2010;55:219–28.PubMed Hoffner L, Parks WT, Swerdlow SH, Carson JC, Surti U. Simultaneous detection of imprinted gene expression (p57(KIP2)) and molecular cytogenetics (FICTION) in the evaluation of molar pregnancies. J Reprod Med. 2010;55:219–28.PubMed
16.
go back to reference Fisher RA, Hodges MD, Rees HC, Sebire NJ, Seckl MJ, Newlands ES, et al. The maternally transcribed gene p57KIP2 (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum Mol Genet. 2002;11:1–6.CrossRef Fisher RA, Hodges MD, Rees HC, Sebire NJ, Seckl MJ, Newlands ES, et al. The maternally transcribed gene p57KIP2 (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum Mol Genet. 2002;11:1–6.CrossRef
17.
go back to reference Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Histopathological features of biparental complete hydatidiform moles in women with NLRP7 mutations. Placenta. 2013;34:50–6.CrossRefPubMed Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Histopathological features of biparental complete hydatidiform moles in women with NLRP7 mutations. Placenta. 2013;34:50–6.CrossRefPubMed
18.
go back to reference Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16 Spec No.2:R203-8.PubMed Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16 Spec No.2:R203-8.PubMed
20.
go back to reference Norris-Kirby A, Hagenkord JM, Kshirsagar MP, Ronnett BM, Murphy KM. Abnormal villous morphology associated with triple trisomy of paternal origin. J Mol Diagn. 2010;12:525–9.PubMedCentralCrossRefPubMed Norris-Kirby A, Hagenkord JM, Kshirsagar MP, Ronnett BM, Murphy KM. Abnormal villous morphology associated with triple trisomy of paternal origin. J Mol Diagn. 2010;12:525–9.PubMedCentralCrossRefPubMed
21.
go back to reference Jauniaux E, Halder A, Partington C. A case of partial mole associated with trisomy 13. Ultrasound Obstet Gynecol. 1998;11:62–4.CrossRefPubMed Jauniaux E, Halder A, Partington C. A case of partial mole associated with trisomy 13. Ultrasound Obstet Gynecol. 1998;11:62–4.CrossRefPubMed
22.
go back to reference Curtin WM, Marcotte MP, Myers LL, Brost BC. Trisomy 13 appearing as a mimic of a triploid partial mole. J Ultrasound Med. 2001;20:1137–9.PubMed Curtin WM, Marcotte MP, Myers LL, Brost BC. Trisomy 13 appearing as a mimic of a triploid partial mole. J Ultrasound Med. 2001;20:1137–9.PubMed
23.
go back to reference Has R, Ibrahimoğlu L, Ergene H, Ermis H, Başaran S. Partial molar appearance of the placenta in trisomy 13. Fetal Diagn Ther. 2002;17:205–8.CrossRefPubMed Has R, Ibrahimoğlu L, Ergene H, Ermis H, Başaran S. Partial molar appearance of the placenta in trisomy 13. Fetal Diagn Ther. 2002;17:205–8.CrossRefPubMed
24.
go back to reference Redline RW, Hassold T, Zaragoza M. Determinants of villous trophoblastic hyperplasia in spontaneous abortions. Mod Pathol. 1998;11:762–8.PubMed Redline RW, Hassold T, Zaragoza M. Determinants of villous trophoblastic hyperplasia in spontaneous abortions. Mod Pathol. 1998;11:762–8.PubMed
Metadata
Title
Abnormal villous morphology mimicking a hydatidiform mole associated with paternal trisomy of chromosomes 3,7,8 and unipaternal disomy of chromosome 11
Authors
Neil J Sebire
Philippa C May
Baljeet Kaur
Michael J Seckl
Rosemary A Fisher
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2016
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-016-0471-9

Other articles of this Issue 1/2016

Diagnostic Pathology 1/2016 Go to the issue