Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2018

Open Access 01-12-2018 | Research

A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport

Authors: Nienke R. Wevers, Dhanesh G. Kasi, Taylor Gray, Karlijn J. Wilschut, Benjamin Smith, Remko van Vught, Fumitaka Shimizu, Yasuteru Sano, Takashi Kanda, Graham Marsh, Sebastiaan J. Trietsch, Paul Vulto, Henriëtte L. Lanz, Birgit Obermeier

Published in: Fluids and Barriers of the CNS | Issue 1/2018

Login to get access

Abstract

Background

Receptor-mediated transcytosis is one of the major routes for drug delivery of large molecules into the brain. The aim of this study was to develop a novel model of the human blood–brain barrier (BBB) in a high-throughput microfluidic device. This model can be used to assess passage of large biopharmaceuticals, such as therapeutic antibodies, across the BBB.

Methods

The model comprises human cell lines of brain endothelial cells, astrocytes, and pericytes in a two-lane or three-lane microfluidic platform that harbors 96 or 40 chips, respectively, in a 384-well plate format. In each chip, a perfused vessel of brain endothelial cells was grown against an extracellular matrix gel, which was patterned by means of surface tension techniques. Astrocytes and pericytes were added on the other side of the gel to complete the BBB on-a-chip model. Barrier function of the model was studied using fluorescent barrier integrity assays. To test antibody transcytosis, the lumen of the model’s endothelial vessel was perfused with an anti-transferrin receptor antibody or with a control antibody. The levels of antibody that penetrated to the basal compartment were quantified using a mesoscale discovery assay.

Results

The perfused BBB on-a-chip model shows presence of adherens and tight junctions and severely limits the passage of a 20 kDa FITC-dextran dye. Penetration of the antibody targeting the human transferrin receptor (MEM-189) was markedly higher than penetration of the control antibody (apparent permeability of 2.9 × 10−5 versus 1.6 × 10−5 cm/min, respectively).

Conclusions

We demonstrate successful integration of a human BBB microfluidic model in a high-throughput plate-based format that can be used for drug screening purposes. This in vitro model shows sufficient barrier function to study the passage of large molecules and is sensitive to differences in antibody penetration, which could support discovery and engineering of BBB-shuttle technologies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.CrossRefPubMed Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.CrossRefPubMed
2.
go back to reference Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38:323–37.CrossRef Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38:323–37.CrossRef
5.
go back to reference Wevers NR, de Vries HE. Morphogens and blood–brain barrier function in health and disease. Tissue Barriers. 2016;4:e1090524.CrossRefPubMed Wevers NR, de Vries HE. Morphogens and blood–brain barrier function in health and disease. Tissue Barriers. 2016;4:e1090524.CrossRefPubMed
7.
8.
9.
go back to reference Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60.CrossRefPubMed Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60.CrossRefPubMed
10.
go back to reference Webster CI, Caram-Salas N, Haqqani AS, et al. Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30:1927–40.CrossRefPubMed Webster CI, Caram-Salas N, Haqqani AS, et al. Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30:1927–40.CrossRefPubMed
11.
go back to reference Zuchero YJY, Chen X, Bien-Ly N, et al. Discovery of novel blood–brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82.CrossRefPubMed Zuchero YJY, Chen X, Bien-Ly N, et al. Discovery of novel blood–brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82.CrossRefPubMed
12.
go back to reference Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.CrossRefPubMed Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.CrossRefPubMed
13.
go back to reference Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood–brain barrier. Sci Transl Med. 2013;5:183ra57.CrossRefPubMed Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood–brain barrier. Sci Transl Med. 2013;5:183ra57.CrossRefPubMed
14.
go back to reference Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38:727–40.CrossRefPubMed Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38:727–40.CrossRefPubMed
15.
go back to reference Thom G, Hatcher J, Hearn A, et al. Isolation of blood–brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs. 2018;10:304–14.CrossRefPubMed Thom G, Hatcher J, Hearn A, et al. Isolation of blood–brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs. 2018;10:304–14.CrossRefPubMed
16.
go back to reference Weber F, Bohrmann B, Niewoehner J, et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018;22:149–62.CrossRefPubMed Weber F, Bohrmann B, Niewoehner J, et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018;22:149–62.CrossRefPubMed
17.
18.
go back to reference Villaseñor R, Ozmen L, Messaddeq N, et al. Trafficking of endogenous immunoglobulins by endothelial cells at the blood–brain barrier. Sci Rep. 2016;6:25658.CrossRefPubMedPubMedCentral Villaseñor R, Ozmen L, Messaddeq N, et al. Trafficking of endogenous immunoglobulins by endothelial cells at the blood–brain barrier. Sci Rep. 2016;6:25658.CrossRefPubMedPubMedCentral
19.
go back to reference Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.PubMed Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.PubMed
20.
go back to reference Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood–brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim. 1994;30:581–8.CrossRef Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood–brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim. 1994;30:581–8.CrossRef
21.
go back to reference Gardner TW, Lieth E, Khin SA, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997;38:2423–7.PubMed Gardner TW, Lieth E, Khin SA, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997;38:2423–7.PubMed
23.
go back to reference Wolff A, Antfolk M, Brodin B, Tenje M. In vitro blood–brain barrier models—an overview of established models and new microfluidic approaches. J Pharm Sci. 2015;104:2727–46.CrossRefPubMed Wolff A, Antfolk M, Brodin B, Tenje M. In vitro blood–brain barrier models—an overview of established models and new microfluidic approaches. J Pharm Sci. 2015;104:2727–46.CrossRefPubMed
24.
go back to reference van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood–brain barrier research. Tissue Barriers. 2016;4:e1142493.CrossRefPubMedPubMedCentral van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood–brain barrier research. Tissue Barriers. 2016;4:e1142493.CrossRefPubMedPubMedCentral
25.
go back to reference Reichel A, Begley DJ, Abbott NJ. An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med. 2003;89:307–24.PubMed Reichel A, Begley DJ, Abbott NJ. An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med. 2003;89:307–24.PubMed
26.
go back to reference van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip. 2013;13:3562.CrossRefPubMed van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip. 2013;13:3562.CrossRefPubMed
28.
go back to reference Herland A, Van Der Meer AD, FitzGerald EA, Park TE, Sleeboom JJF, Ingber DE. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11:1–21.CrossRef Herland A, Van Der Meer AD, FitzGerald EA, Park TE, Sleeboom JJF, Ingber DE. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11:1–21.CrossRef
29.
go back to reference Bang S, Lee SR, Ko J, et al. A low permeability microfluidic blood–brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep. 2017;7:1–10.CrossRef Bang S, Lee SR, Ko J, et al. A low permeability microfluidic blood–brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep. 2017;7:1–10.CrossRef
30.
go back to reference Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. J Cell Physiol. 2010;225:519–28.CrossRefPubMed Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. J Cell Physiol. 2010;225:519–28.CrossRefPubMed
31.
go back to reference Sano Y, Kashiwamura Y, Abe M, et al. Stable human brain microvascular endothelial cell line retaining its barrier-specific nature independent of the passage number. Clin Exp Neuroimmunol. 2013;4:92–103.CrossRef Sano Y, Kashiwamura Y, Abe M, et al. Stable human brain microvascular endothelial cell line retaining its barrier-specific nature independent of the passage number. Clin Exp Neuroimmunol. 2013;4:92–103.CrossRef
32.
go back to reference Shimizu F, Sano Y, Tominaga O, Maeda T, Abe M, Kanda T. Advanced glycation end-products disrupt the blood–brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging. 2013;34:1902–12.CrossRefPubMed Shimizu F, Sano Y, Tominaga O, Maeda T, Abe M, Kanda T. Advanced glycation end-products disrupt the blood–brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging. 2013;34:1902–12.CrossRefPubMed
33.
go back to reference Haruki H, Sano Y, Shimizu F, et al. NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement. J Neurol Sci. 2013;331:136–44.CrossRefPubMed Haruki H, Sano Y, Shimizu F, et al. NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement. J Neurol Sci. 2013;331:136–44.CrossRefPubMed
34.
go back to reference Shimizu F, Sano Y, Abe M, et al. Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol. 2011;226:255–66.CrossRefPubMed Shimizu F, Sano Y, Abe M, et al. Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol. 2011;226:255–66.CrossRefPubMed
35.
go back to reference Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff RM. An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 2014;232:165–72.CrossRefPubMedPubMedCentral Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff RM. An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 2014;232:165–72.CrossRefPubMedPubMedCentral
36.
go back to reference Spampinato SF, Obermeier B, Cotleur A, et al. Sphingosine 1 plhosphate at the blood brain barrier: can the modulation of S1P receptor 1 influence the response of endothelial cells and astrocytes to inflammatory stimuli? PLoS ONE. 2015;10:e0133392.CrossRefPubMedPubMedCentral Spampinato SF, Obermeier B, Cotleur A, et al. Sphingosine 1 plhosphate at the blood brain barrier: can the modulation of S1P receptor 1 influence the response of endothelial cells and astrocytes to inflammatory stimuli? PLoS ONE. 2015;10:e0133392.CrossRefPubMedPubMedCentral
37.
go back to reference Takeshita Y, Obermeier B, Cotleur AC, et al. Effects of neuromyelitis optica-IgG at the blood–brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm. 2017;4:e311.CrossRefPubMed Takeshita Y, Obermeier B, Cotleur AC, et al. Effects of neuromyelitis optica-IgG at the blood–brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm. 2017;4:e311.CrossRefPubMed
38.
go back to reference Shimizu F, Schaller KL, Owens GP, et al. Glucose-regulated protein 78 autoantibody associates with blood–brain barrier disruption in neuromyelitis optica. Sci Transl Med. 2017;9:eaai9111.CrossRefPubMedPubMedCentral Shimizu F, Schaller KL, Owens GP, et al. Glucose-regulated protein 78 autoantibody associates with blood–brain barrier disruption in neuromyelitis optica. Sci Transl Med. 2017;9:eaai9111.CrossRefPubMedPubMedCentral
39.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.CrossRefPubMed Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.CrossRefPubMed
40.
go back to reference Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip. 2013;13:3548–54.CrossRefPubMed Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip. 2013;13:3548–54.CrossRefPubMed
41.
go back to reference Wevers NR, van Vught R, Wilschut KJ, et al. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep. 2016;6:38856.CrossRefPubMedPubMedCentral Wevers NR, van Vught R, Wilschut KJ, et al. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep. 2016;6:38856.CrossRefPubMedPubMedCentral
42.
44.
go back to reference Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J. 2004;87:4259–70.CrossRefPubMedPubMedCentral Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J. 2004;87:4259–70.CrossRefPubMedPubMedCentral
45.
go back to reference Hawe A, Hulse WL, Jiskoot W, Forbes RT. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res. 2011;28:2302–10.CrossRefPubMedPubMedCentral Hawe A, Hulse WL, Jiskoot W, Forbes RT. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res. 2011;28:2302–10.CrossRefPubMedPubMedCentral
46.
go back to reference Trietsch SJ, Naumovska E, Kurek D, et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. 2017;8:262.CrossRefPubMedPubMedCentral Trietsch SJ, Naumovska E, Kurek D, et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. 2017;8:262.CrossRefPubMedPubMedCentral
47.
go back to reference Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård P-O, Niewoehner J. A human blood–brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS ONE. 2014;9:e96340.CrossRefPubMedPubMedCentral Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård P-O, Niewoehner J. A human blood–brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS ONE. 2014;9:e96340.CrossRefPubMedPubMedCentral
48.
go back to reference Goldbaum FA, Cauerhff A, Velikovsky CA, Llera AS, Riottot MM, Poljak RJ. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen egg lysozyme. J Immunol. 1999;162:6040–5.PubMed Goldbaum FA, Cauerhff A, Velikovsky CA, Llera AS, Riottot MM, Poljak RJ. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen egg lysozyme. J Immunol. 1999;162:6040–5.PubMed
49.
go back to reference Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J Pharm Sci. 2001;90:1681–98.CrossRefPubMed Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J Pharm Sci. 2001;90:1681–98.CrossRefPubMed
50.
go back to reference Cho C-F, Wolfe JM, Fadzen CM, et al. Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun. 2017;8:15623.CrossRefPubMedPubMedCentral Cho C-F, Wolfe JM, Fadzen CM, et al. Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun. 2017;8:15623.CrossRefPubMedPubMedCentral
51.
go back to reference Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.CrossRefPubMedPubMedCentral Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.CrossRefPubMedPubMedCentral
52.
go back to reference Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.CrossRefPubMedPubMedCentral Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.CrossRefPubMedPubMedCentral
53.
go back to reference Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS. 2018;15:7.CrossRefPubMedPubMedCentral Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS. 2018;15:7.CrossRefPubMedPubMedCentral
54.
go back to reference Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.CrossRefPubMedPubMedCentral Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.CrossRefPubMedPubMedCentral
55.
go back to reference Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 2018;8:1873.CrossRefPubMedPubMedCentral Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 2018;8:1873.CrossRefPubMedPubMedCentral
56.
go back to reference Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood–brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim. 1994;30A:581–8.CrossRefPubMed Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood–brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim. 1994;30A:581–8.CrossRefPubMed
57.
go back to reference Hopkins AM, DeSimone E, Chwalek K, Kaplan DL. 3D in vitro modeling of the central nervous system. Prog Neurobiol. 2015;125:1–25.CrossRefPubMed Hopkins AM, DeSimone E, Chwalek K, Kaplan DL. 3D in vitro modeling of the central nervous system. Prog Neurobiol. 2015;125:1–25.CrossRefPubMed
58.
go back to reference Naik P, Cucullo L. In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101:1337–54.CrossRefPubMed Naik P, Cucullo L. In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101:1337–54.CrossRefPubMed
59.
go back to reference Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177.CrossRefPubMed Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177.CrossRefPubMed
60.
go back to reference Cucullo L, Hossain M, Tierney W, Janigro D. A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box. BMC Neurosci. 2013;14:18.CrossRefPubMedPubMedCentral Cucullo L, Hossain M, Tierney W, Janigro D. A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box. BMC Neurosci. 2013;14:18.CrossRefPubMedPubMedCentral
61.
go back to reference Seebach J, Dieterich P, Luo F, et al. Endothelial barrier function under laminar fluid shear stress. Lab Invest. 2000;80:1819–31.CrossRefPubMed Seebach J, Dieterich P, Luo F, et al. Endothelial barrier function under laminar fluid shear stress. Lab Invest. 2000;80:1819–31.CrossRefPubMed
62.
go back to reference Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.CrossRefPubMedPubMedCentral Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.CrossRefPubMedPubMedCentral
63.
go back to reference Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 2011;12:40.CrossRefPubMedPubMedCentral Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 2011;12:40.CrossRefPubMedPubMedCentral
64.
go back to reference Reinitz A, DeStefano J, Ye M, Wong AD, Searson PC. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc Res. 2015;99:8–18.CrossRefPubMedPubMedCentral Reinitz A, DeStefano J, Ye M, Wong AD, Searson PC. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc Res. 2015;99:8–18.CrossRefPubMedPubMedCentral
65.
go back to reference DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS. 2017;14:20.CrossRefPubMedPubMedCentral DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS. 2017;14:20.CrossRefPubMedPubMedCentral
66.
go back to reference Zhang H, Chiao M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng. 2015;35:143–55.CrossRefPubMedPubMedCentral Zhang H, Chiao M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng. 2015;35:143–55.CrossRefPubMedPubMedCentral
67.
go back to reference Wong I, Ho CM. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluidics. 2009;7:291–306.CrossRefPubMedPubMedCentral Wong I, Ho CM. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluidics. 2009;7:291–306.CrossRefPubMedPubMedCentral
68.
go back to reference Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–3.CrossRefPubMed Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–3.CrossRefPubMed
69.
go back to reference Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46.CrossRefPubMed Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46.CrossRefPubMed
70.
go back to reference Farrington GK, Caram-Salas N, Haqqani AS, et al. A novel platform for engineering blood–brain barrier-crossing bispecific biologics. FASEB J. 2014;28:4764–78.CrossRefPubMed Farrington GK, Caram-Salas N, Haqqani AS, et al. A novel platform for engineering blood–brain barrier-crossing bispecific biologics. FASEB J. 2014;28:4764–78.CrossRefPubMed
71.
go back to reference Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9.CrossRefPubMed Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9.CrossRefPubMed
73.
go back to reference Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem. 2001;79:119–29.CrossRefPubMed Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem. 2001;79:119–29.CrossRefPubMed
Metadata
Title
A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport
Authors
Nienke R. Wevers
Dhanesh G. Kasi
Taylor Gray
Karlijn J. Wilschut
Benjamin Smith
Remko van Vught
Fumitaka Shimizu
Yasuteru Sano
Takashi Kanda
Graham Marsh
Sebastiaan J. Trietsch
Paul Vulto
Henriëtte L. Lanz
Birgit Obermeier
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2018
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-018-0108-3

Other articles of this Issue 1/2018

Fluids and Barriers of the CNS 1/2018 Go to the issue