Skip to main content
Top
Published in: Virology Journal 1/2024

Open Access 01-12-2024 | Adenovirus | Review

Exosome-mediated regulation of inflammatory pathway during respiratory viral disease

Authors: Hamidreza Gheitasi, Mohammad Sabbaghian, Ali Akbar Shekarchi, Amir Ali Mirmazhary, Vahdat Poortahmasebi

Published in: Virology Journal | Issue 1/2024

Login to get access

Abstract

Viruses have developed many mechanisms by which they can stimulate or inhibit inflammation and cause various diseases, including viral respiratory diseases that kill many people every year. One of the mechanisms that viruses use to induce or inhibit inflammation is exosomes. Exosomes are small membrane nanovesicles (30–150 nm) released from cells that contain proteins, DNA, and coding and non-coding RNA species. They are a group of extracellular vesicles that cells can take up to produce and mediate communication. Intercellular effect exosomes can deliver a broad confine of biological molecules, containing nucleic acids, proteins, and lipids, to the target cell, where they can convey therapeutic or pathogenic consequences through the modulation of inflammation and immune processes. Recent research has shown that exosomes can deliver entire virus genomes or virions to distant target cells, then the delivered viruses can escape the immune system and infect cells. Adenoviruses, orthomyxoviruses, paramyxoviruses, respiratory syncytial viruses, picornaviruses, coronaviruses, and rhinoviruses are mostly related to respiratory diseases. In this article, we will first discuss the current knowledge of exosomes. We will learn about the relationship between exosomes and viral infections, and We mention the inflammations caused by viruses in the airways, the role of exosomes in them, and finally, we examine the relationship between the viruses as mentioned earlier, and the regulation of inflammatory pathways that play a role in causing the disease.
Literature
1.
go back to reference Ding L, Qi H, Wang Y, Zhang Z, Liu Q, Guo C, et al. Recent advances in ginsenosides against respiratory diseases: therapeutic targets and potential mechanisms. Biomed Pharmacother. 2023;158:114096.PubMedCrossRef Ding L, Qi H, Wang Y, Zhang Z, Liu Q, Guo C, et al. Recent advances in ginsenosides against respiratory diseases: therapeutic targets and potential mechanisms. Biomed Pharmacother. 2023;158:114096.PubMedCrossRef
3.
4.
go back to reference Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, et al. Phytochemicals from plant foods as potential source of antiviral agents: an overview. Pharmaceuticals. 2021;14(4):381.PubMedPubMedCentralCrossRef Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, et al. Phytochemicals from plant foods as potential source of antiviral agents: an overview. Pharmaceuticals. 2021;14(4):381.PubMedPubMedCentralCrossRef
6.
go back to reference Schoborg RV, Borel N. Porcine epidemic diarrhea virus (PEDV) co-infection induced chlamydial persistence/stress does not require viral replication. Front Cell Infect Microbiol. 2014;4:20.PubMedPubMedCentralCrossRef Schoborg RV, Borel N. Porcine epidemic diarrhea virus (PEDV) co-infection induced chlamydial persistence/stress does not require viral replication. Front Cell Infect Microbiol. 2014;4:20.PubMedPubMedCentralCrossRef
7.
9.
10.
go back to reference Chotpitayasunondh T, Fischer TK, Heraud JM, Hurt AC, Monto AS, Osterhaus A, et al. Influenza and COVID-19: what does co-existence mean? Influenza Other Respir Viruses. 2021;15(3):407–12.PubMedCrossRef Chotpitayasunondh T, Fischer TK, Heraud JM, Hurt AC, Monto AS, Osterhaus A, et al. Influenza and COVID-19: what does co-existence mean? Influenza Other Respir Viruses. 2021;15(3):407–12.PubMedCrossRef
11.
go back to reference Cordisco M, Lucente MS, Sposato A, Cardone R, Pellegrini F, Franchini D, et al. Canine parainfluenza virus infection in a dog with acute respiratory disease. Vet Sci. 2022;9(7):346.PubMedPubMedCentral Cordisco M, Lucente MS, Sposato A, Cardone R, Pellegrini F, Franchini D, et al. Canine parainfluenza virus infection in a dog with acute respiratory disease. Vet Sci. 2022;9(7):346.PubMedPubMedCentral
12.
go back to reference Ortega H, Nickle D, Carter L. Rhinovirus and asthma: challenges and opportunities. Rev Med Virol. 2021;31(4):e2193.PubMedCrossRef Ortega H, Nickle D, Carter L. Rhinovirus and asthma: challenges and opportunities. Rev Med Virol. 2021;31(4):e2193.PubMedCrossRef
13.
go back to reference He Y, Zhang J, Feng J, Mei Z, Qian L, Huang Q, et al. Viral spectrum and clinical features in adult inpatients with community-acquired pneumonia and respiratory viral infection. Chin Gen Pract. 2021;24(26):3323. He Y, Zhang J, Feng J, Mei Z, Qian L, Huang Q, et al. Viral spectrum and clinical features in adult inpatients with community-acquired pneumonia and respiratory viral infection. Chin Gen Pract. 2021;24(26):3323.
14.
go back to reference Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.PubMedCrossRef Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.PubMedCrossRef
15.
go back to reference Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: from transmission to diagnosis and therapy. Cell Signal. 2022;94:110325.PubMedPubMedCentralCrossRef Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: from transmission to diagnosis and therapy. Cell Signal. 2022;94:110325.PubMedPubMedCentralCrossRef
17.
go back to reference Shi Y, Du L, Lv D, Li Y, Zhang Z, Huang X, et al. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol. 2021;56:336–49.PubMedPubMedCentralCrossRef Shi Y, Du L, Lv D, Li Y, Zhang Z, Huang X, et al. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol. 2021;56:336–49.PubMedPubMedCentralCrossRef
18.
go back to reference Fu Y, Zi R, Xiong S. Infection by exosome-carried Coxsackievirus B3 induces immune escape resulting in an aggravated pathogenesis. Microbes Infect. 2023:105148. Fu Y, Zi R, Xiong S. Infection by exosome-carried Coxsackievirus B3 induces immune escape resulting in an aggravated pathogenesis. Microbes Infect. 2023:105148.
21.
go back to reference Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Jiang Y, Wang F, Wang K, Zhong Y, Wei X, Wang Q, et al. Engineered exosomes: a promising drug delivery strategy for brain diseases. Curr Med Chem. 2022;29(17):3111–24.PubMedCrossRef Jiang Y, Wang F, Wang K, Zhong Y, Wei X, Wang Q, et al. Engineered exosomes: a promising drug delivery strategy for brain diseases. Curr Med Chem. 2022;29(17):3111–24.PubMedCrossRef
24.
go back to reference Ding D, He X, Agarry IE, Wang Y, Zhou F, Li Y, et al. Profile of human milk phospholipids at different lactation stages with UPLC/Q-TOF-MS: characterization, distribution, and differences. J Agric Food Chem. 2023;71(16):6326–37.PubMedCrossRef Ding D, He X, Agarry IE, Wang Y, Zhou F, Li Y, et al. Profile of human milk phospholipids at different lactation stages with UPLC/Q-TOF-MS: characterization, distribution, and differences. J Agric Food Chem. 2023;71(16):6326–37.PubMedCrossRef
25.
go back to reference Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1):1–39.CrossRef Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1):1–39.CrossRef
26.
go back to reference Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684.PubMedPubMedCentralCrossRef Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684.PubMedPubMedCentralCrossRef
27.
go back to reference Sims B, Gu L, Krendelchtchikov A, Matthews QL. Neural stem cell-derived exosomes mediate viral entry. Int J Nanomed. 2014;9:4893.CrossRef Sims B, Gu L, Krendelchtchikov A, Matthews QL. Neural stem cell-derived exosomes mediate viral entry. Int J Nanomed. 2014;9:4893.CrossRef
28.
go back to reference Admyre C, Telemo E, Almqvist N, Lötvall J, Lahesmaa R, Scheynius A, et al. Exosomes–nanovesicles with possible roles in allergic inflammation. Allergy. 2008;63(4):404–8.PubMedCrossRef Admyre C, Telemo E, Almqvist N, Lötvall J, Lahesmaa R, Scheynius A, et al. Exosomes–nanovesicles with possible roles in allergic inflammation. Allergy. 2008;63(4):404–8.PubMedCrossRef
29.
go back to reference Than UTT, Guanzon D, Leavesley D, Parker T. Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci. 2017;18(5):956.PubMedPubMedCentralCrossRef Than UTT, Guanzon D, Leavesley D, Parker T. Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci. 2017;18(5):956.PubMedPubMedCentralCrossRef
30.
go back to reference Burkova EE, Sedykh SE, Nevinsky GA. Human placenta exosomes: biogenesis, isolation, composition, and prospects for use in diagnostics. Int J Mol Sci. 2021;22(4):2158.PubMedPubMedCentralCrossRef Burkova EE, Sedykh SE, Nevinsky GA. Human placenta exosomes: biogenesis, isolation, composition, and prospects for use in diagnostics. Int J Mol Sci. 2021;22(4):2158.PubMedPubMedCentralCrossRef
31.
go back to reference Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, et al. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med. 2020;9(2):436.PubMedPubMedCentralCrossRef Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, et al. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med. 2020;9(2):436.PubMedPubMedCentralCrossRef
32.
go back to reference Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):1–19.CrossRef Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):1–19.CrossRef
33.
go back to reference Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, et al. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif. 2020;53(7):e12857.PubMedPubMedCentralCrossRef Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, et al. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif. 2020;53(7):e12857.PubMedPubMedCentralCrossRef
34.
go back to reference Jia G, Sowers JR. Targeting endothelial exosomes for the prevention of cardiovascular disease. Biochim et Biophys Acta (BBA)-Mol Basis Dis. 2020;1866(8):165833.CrossRef Jia G, Sowers JR. Targeting endothelial exosomes for the prevention of cardiovascular disease. Biochim et Biophys Acta (BBA)-Mol Basis Dis. 2020;1866(8):165833.CrossRef
35.
go back to reference Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in ageing and motor neurone disease: biogenesis, uptake mechanisms, modifications in disease and uses in the development of biomarkers and therapeutics. Cells. 2021;10(11):2930.PubMedPubMedCentralCrossRef Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in ageing and motor neurone disease: biogenesis, uptake mechanisms, modifications in disease and uses in the development of biomarkers and therapeutics. Cells. 2021;10(11):2930.PubMedPubMedCentralCrossRef
36.
go back to reference Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5(1):3477.PubMedCrossRef Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5(1):3477.PubMedCrossRef
38.
go back to reference Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014;127(17):3641–8.PubMed Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014;127(17):3641–8.PubMed
39.
go back to reference Palmulli R, van Niel G. To be or not to be… secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 2018;62(2):177–91.PubMedCrossRef Palmulli R, van Niel G. To be or not to be… secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 2018;62(2):177–91.PubMedCrossRef
40.
go back to reference Zhao R, Zhao T, He Z, Cai R, Pang W. Composition, isolation, identification and function of adipose tissue-derived exosomes. Adipocyte. 2021;10(1):587–604.PubMedPubMedCentralCrossRef Zhao R, Zhao T, He Z, Cai R, Pang W. Composition, isolation, identification and function of adipose tissue-derived exosomes. Adipocyte. 2021;10(1):587–604.PubMedPubMedCentralCrossRef
41.
go back to reference Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany KV, Liang NW, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci. 2022;9(15):2103222.CrossRef Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany KV, Liang NW, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci. 2022;9(15):2103222.CrossRef
42.
go back to reference Huang J, Xiong J, Yang L, Zhang J, Sun S, Liang Y. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale. 2021;13(19):8740–50.PubMedCrossRef Huang J, Xiong J, Yang L, Zhang J, Sun S, Liang Y. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale. 2021;13(19):8740–50.PubMedCrossRef
43.
44.
go back to reference Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.PubMedCrossRef Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.PubMedCrossRef
45.
go back to reference Mao W, Wang K, Wu Z, Xu B, Chen M. Current status of research on exosomes in general, and for the diagnosis and treatment of kidney cancer in particular. J Exp Clin Cancer Res. 2021;40(1):1–13.CrossRef Mao W, Wang K, Wu Z, Xu B, Chen M. Current status of research on exosomes in general, and for the diagnosis and treatment of kidney cancer in particular. J Exp Clin Cancer Res. 2021;40(1):1–13.CrossRef
46.
47.
go back to reference Jiao Y, Xu P, Shi H, Chen D, Shi H. Advances on liver cell-derived exosomes in liver diseases. J Cell Mol Med. 2021;25(1):15–26.PubMedCrossRef Jiao Y, Xu P, Shi H, Chen D, Shi H. Advances on liver cell-derived exosomes in liver diseases. J Cell Mol Med. 2021;25(1):15–26.PubMedCrossRef
48.
go back to reference Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping up the tumor microenvironment with cellular fibronectin. Front Oncol. 2020;10:641.PubMedPubMedCentralCrossRef Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping up the tumor microenvironment with cellular fibronectin. Front Oncol. 2020;10:641.PubMedPubMedCentralCrossRef
49.
go back to reference Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological functions and therapeutic potential of Lipocalin 2 in cancer. Int J Mol Sci. 2020;21(12):4365.PubMedPubMedCentralCrossRef Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological functions and therapeutic potential of Lipocalin 2 in cancer. Int J Mol Sci. 2020;21(12):4365.PubMedPubMedCentralCrossRef
50.
go back to reference Chan BD, Wong WY, Lee MM, Cho WC, Yee BK, Kwan YW, et al. Exosomes in inflammation and inflammatory disease. Proteomics. 2019;19(8):e1800149.PubMedCrossRef Chan BD, Wong WY, Lee MM, Cho WC, Yee BK, Kwan YW, et al. Exosomes in inflammation and inflammatory disease. Proteomics. 2019;19(8):e1800149.PubMedCrossRef
52.
go back to reference Chow A, Zhou W, Liu L, Fong M, Champer J, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-ĸB. Sci Rep. 2014;4:5750.PubMedPubMedCentralCrossRef Chow A, Zhou W, Liu L, Fong M, Champer J, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-ĸB. Sci Rep. 2014;4:5750.PubMedPubMedCentralCrossRef
53.
go back to reference Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β–mediated suppressive activity on T lymphocytes. Can Res. 2006;66(18):9290–8.CrossRef Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β–mediated suppressive activity on T lymphocytes. Can Res. 2006;66(18):9290–8.CrossRef
54.
go back to reference Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin J-P, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Investig. 2010;120(2):457–71.PubMedPubMedCentral Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin J-P, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Investig. 2010;120(2):457–71.PubMedPubMedCentral
55.
go back to reference Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica. 2011;96(9):1302–9.PubMedPubMedCentralCrossRef Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica. 2011;96(9):1302–9.PubMedPubMedCentralCrossRef
56.
go back to reference Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS ONE. 2010;5(7):e11469.PubMedPubMedCentralCrossRef Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS ONE. 2010;5(7):e11469.PubMedPubMedCentralCrossRef
57.
go back to reference Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7(6):454–65.PubMedCrossRef Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7(6):454–65.PubMedCrossRef
58.
go back to reference Li D, Jia H, Zhang H, Lv M, Liu J, Zhang Y, et al. TLR4 signaling induces the release of microparticles by tumor cells that regulate inflammatory cytokine IL-6 of macrophages via microRNA let-7b. Oncoimmunology. 2012;1(5):687–93.PubMedPubMedCentralCrossRef Li D, Jia H, Zhang H, Lv M, Liu J, Zhang Y, et al. TLR4 signaling induces the release of microparticles by tumor cells that regulate inflammatory cytokine IL-6 of macrophages via microRNA let-7b. Oncoimmunology. 2012;1(5):687–93.PubMedPubMedCentralCrossRef
59.
go back to reference Calderón MA. Cardiopulmonary axis and cardiovascular mortality in patients with COPD. SEMERGEN. 2023;49(4):101928. Calderón MA. Cardiopulmonary axis and cardiovascular mortality in patients with COPD. SEMERGEN. 2023;49(4):101928.
60.
go back to reference Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods (San Diego Calif). 2015;87:59–63.PubMedCrossRef Kesimer M, Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods (San Diego Calif). 2015;87:59–63.PubMedCrossRef
61.
go back to reference De SK. Novel 4-chloro-N-phenyl benzamide derivatives as p38α mitogenactivated protein kinase inhibitors for treating cancer, COVID-19, and other diseases. Recent Pat Anti-Cancer Drug Discov. 2023;18(4):549–51.CrossRef De SK. Novel 4-chloro-N-phenyl benzamide derivatives as p38α mitogenactivated protein kinase inhibitors for treating cancer, COVID-19, and other diseases. Recent Pat Anti-Cancer Drug Discov. 2023;18(4):549–51.CrossRef
62.
go back to reference Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin TY, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16(1):72.PubMedPubMedCentralCrossRef Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin TY, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16(1):72.PubMedPubMedCentralCrossRef
63.
go back to reference Chang Y, Al-Alwan L, Alshakfa S, Audusseau S, Mogas AK, Chouiali F, et al. Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respir Res. 2014;15(1):145.PubMedPubMedCentralCrossRef Chang Y, Al-Alwan L, Alshakfa S, Audusseau S, Mogas AK, Chouiali F, et al. Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respir Res. 2014;15(1):145.PubMedPubMedCentralCrossRef
64.
go back to reference Liu Z, Yan J, Tong L, Liu S, Zhang Y. The role of exosomes from BALF in lung disease. J Cell Physiol. 2022;237(1):161–8.PubMedCrossRef Liu Z, Yan J, Tong L, Liu S, Zhang Y. The role of exosomes from BALF in lung disease. J Cell Physiol. 2022;237(1):161–8.PubMedCrossRef
65.
go back to reference Lee H, Zhang D, Laskin DL, Jin Y. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation. J Immunol (Baltim Md: 1950). 1950;201(5):1500–9. Lee H, Zhang D, Laskin DL, Jin Y. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation. J Immunol (Baltim Md: 1950). 1950;201(5):1500–9.
66.
go back to reference Gauvreau GM, El-Gammal AI, O’Byrne PM. Allergen-induced airway responses. Eur Respir J. 2015;46(3):819–31.PubMedCrossRef Gauvreau GM, El-Gammal AI, O’Byrne PM. Allergen-induced airway responses. Eur Respir J. 2015;46(3):819–31.PubMedCrossRef
67.
go back to reference Esnault S, Kelly EA, Johnson SH, DeLain LP, Haedt MJ, Noll AL, et al. Matrix metalloproteinase-9-dependent release of IL-1β by human eosinophils. Mediators Inflamm. 2019;2019:7479107.PubMedPubMedCentralCrossRef Esnault S, Kelly EA, Johnson SH, DeLain LP, Haedt MJ, Noll AL, et al. Matrix metalloproteinase-9-dependent release of IL-1β by human eosinophils. Mediators Inflamm. 2019;2019:7479107.PubMedPubMedCentralCrossRef
68.
go back to reference Kapferer-Seebacher I, Pepin M, Werner R, Aitman TJ, Nordgren A, Stoiber H, et al. Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet. 2016;99(5):1005–14.PubMedPubMedCentralCrossRef Kapferer-Seebacher I, Pepin M, Werner R, Aitman TJ, Nordgren A, Stoiber H, et al. Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet. 2016;99(5):1005–14.PubMedPubMedCentralCrossRef
69.
go back to reference Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes—structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81(1):2–10.PubMedCrossRef Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes—structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81(1):2–10.PubMedCrossRef
70.
71.
go back to reference Xu K, Zhang C, Du T, Gabriel ANA, Wang X, Li X, et al. Progress of exosomes in the diagnosis and treatment of lung cancer. Biomed Pharmacother Biomed Pharmacother. 2021;134:111111.PubMedCrossRef Xu K, Zhang C, Du T, Gabriel ANA, Wang X, Li X, et al. Progress of exosomes in the diagnosis and treatment of lung cancer. Biomed Pharmacother Biomed Pharmacother. 2021;134:111111.PubMedCrossRef
72.
73.
go back to reference Saad MH, Badierah R, Redwan EM, El-Fakharany EM. A comprehensive insight into the role of exosomes in viral infection: dual faces bearing different functions. Pharmaceutics. 2021;13(9):1405.PubMedPubMedCentralCrossRef Saad MH, Badierah R, Redwan EM, El-Fakharany EM. A comprehensive insight into the role of exosomes in viral infection: dual faces bearing different functions. Pharmaceutics. 2021;13(9):1405.PubMedPubMedCentralCrossRef
74.
go back to reference Vlachakis D, Mitsis Τ, Nicolaides N, Efthimiadou A, Giannakakis A, Bacopoulou F, et al. Functions, pathophysiology and current insights of exosomal endocrinology. Mol Med Rep. 2021;23(1):1.CrossRef Vlachakis D, Mitsis Τ, Nicolaides N, Efthimiadou A, Giannakakis A, Bacopoulou F, et al. Functions, pathophysiology and current insights of exosomal endocrinology. Mol Med Rep. 2021;23(1):1.CrossRef
75.
go back to reference Dyball LE, Smales CM. Exosomes: biogenesis, targeting, characterization and their potential as “Plug & Play” vaccine platforms. Biotechnol J. 2022;17(11):2100646.CrossRef Dyball LE, Smales CM. Exosomes: biogenesis, targeting, characterization and their potential as “Plug & Play” vaccine platforms. Biotechnol J. 2022;17(11):2100646.CrossRef
76.
go back to reference Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, et al. Exosomes: potential disease biomarkers and new therapeutic targets. Biomedicines. 2021;9(8):1061.PubMedPubMedCentralCrossRef Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, et al. Exosomes: potential disease biomarkers and new therapeutic targets. Biomedicines. 2021;9(8):1061.PubMedPubMedCentralCrossRef
77.
go back to reference Gurunathan S, Kang M-H, Kim J-H. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomed. 2021;16:1281.CrossRef Gurunathan S, Kang M-H, Kim J-H. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomed. 2021;16:1281.CrossRef
79.
go back to reference Sanfridson A, Hester S, Doyle C. Nef proteins encoded by human and simian immunodeficiency viruses induce the accumulation of endosomes and lysosomes in human T cells. Proc Natl Acad Sci USA. 1997;94(3):873–8.PubMedPubMedCentralCrossRef Sanfridson A, Hester S, Doyle C. Nef proteins encoded by human and simian immunodeficiency viruses induce the accumulation of endosomes and lysosomes in human T cells. Proc Natl Acad Sci USA. 1997;94(3):873–8.PubMedPubMedCentralCrossRef
80.
go back to reference Stumptner-Cuvelette P, Jouve M, Helft J, Dugast M, Glouzman AS, Jooss K, et al. Human immunodeficiency virus-1 Nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell. 2003;14(12):4857–70.PubMedPubMedCentralCrossRef Stumptner-Cuvelette P, Jouve M, Helft J, Dugast M, Glouzman AS, Jooss K, et al. Human immunodeficiency virus-1 Nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell. 2003;14(12):4857–70.PubMedPubMedCentralCrossRef
81.
go back to reference Pužar Dominkuš P, Ferdin J, Plemenitaš A, Peterlin BM, Lenassi M. Nef is secreted in exosomes from Nef.GFP-expressing and HIV-1-infected human astrocytes. J Neurovirol. 2017;23(5):713–24.PubMedCrossRef Pužar Dominkuš P, Ferdin J, Plemenitaš A, Peterlin BM, Lenassi M. Nef is secreted in exosomes from Nef.GFP-expressing and HIV-1-infected human astrocytes. J Neurovirol. 2017;23(5):713–24.PubMedCrossRef
82.
go back to reference Aqil M, Naqvi AR, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles. 2014;3:23129.CrossRef Aqil M, Naqvi AR, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles. 2014;3:23129.CrossRef
83.
go back to reference Ali SA, Huang MB, Campbell PE, Roth WW, Campbell T, Khan M, et al. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses. 2010;26(2):173–92.PubMedPubMedCentralCrossRef Ali SA, Huang MB, Campbell PE, Roth WW, Campbell T, Khan M, et al. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses. 2010;26(2):173–92.PubMedPubMedCentralCrossRef
84.
go back to reference Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8(1):387.PubMedPubMedCentralCrossRef Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8(1):387.PubMedPubMedCentralCrossRef
85.
go back to reference Wu J, Zhao Y, Chen Q, Chen Y, Gu J, Mao L. Enterovirus A71 promotes exosome secretion by the nonstructural protein 3A interacting with Rab27a. Microbiol Spectrum. 2023;11(2):e03446-e3522.CrossRef Wu J, Zhao Y, Chen Q, Chen Y, Gu J, Mao L. Enterovirus A71 promotes exosome secretion by the nonstructural protein 3A interacting with Rab27a. Microbiol Spectrum. 2023;11(2):e03446-e3522.CrossRef
86.
go back to reference Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol. 2012;189(2):744–54.PubMedCrossRef Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol. 2012;189(2):744–54.PubMedCrossRef
87.
go back to reference Li M, Aliotta JM, Asara JM, Tucker L, Quesenberry P, Lally M, et al. Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics. 2012;12(13):2203–11.PubMedCrossRef Li M, Aliotta JM, Asara JM, Tucker L, Quesenberry P, Lally M, et al. Quantitative proteomic analysis of exosomes from HIV-1-infected lymphocytic cells. Proteomics. 2012;12(13):2203–11.PubMedCrossRef
88.
go back to reference Muratori C, Cavallin LE, Krätzel K, Tinari A, De Milito A, Fais S, et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe. 2009;6(3):218–30.PubMedCrossRef Muratori C, Cavallin LE, Krätzel K, Tinari A, De Milito A, Fais S, et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe. 2009;6(3):218–30.PubMedCrossRef
89.
go back to reference Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11(1):110–22.PubMedPubMedCentralCrossRef Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11(1):110–22.PubMedPubMedCentralCrossRef
90.
go back to reference Mukhamedova N, Hoang A, Dragoljevic D, Dubrovsky L, Pushkarsky T, Low H, et al. Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathog. 2019;15(7):e1007907.PubMedPubMedCentralCrossRef Mukhamedova N, Hoang A, Dragoljevic D, Dubrovsky L, Pushkarsky T, Low H, et al. Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathog. 2019;15(7):e1007907.PubMedPubMedCentralCrossRef
91.
go back to reference Yin M, Ding X, Yin S, Wang L, Zhang K, Chen Y, et al. Exosomes from hepatitis B virus‐infected hepatocytes activate hepatic stellate cells and aggravate liver fibrosis through the miR‐506‐3p/Nur77 pathway. J Biochem Mol Toxicol. 2023:e23432. Yin M, Ding X, Yin S, Wang L, Zhang K, Chen Y, et al. Exosomes from hepatitis B virus‐infected hepatocytes activate hepatic stellate cells and aggravate liver fibrosis through the miR‐506‐3p/Nur77 pathway. J Biochem Mol Toxicol. 2023:e23432.
92.
go back to reference Cao D, Gooneratne I, Mera C, Vy J, Royal M, Huang B, et al. Analysis of template variations on RNA synthesis by respiratory syncytial virus polymerase. Viruses. 2023;15(1):47.CrossRef Cao D, Gooneratne I, Mera C, Vy J, Royal M, Huang B, et al. Analysis of template variations on RNA synthesis by respiratory syncytial virus polymerase. Viruses. 2023;15(1):47.CrossRef
93.
go back to reference Wittenauer R, Pecenka C, Baral R. Cost of childhood RSV management and cost-effectiveness of RSV interventions: a systematic review from a low-and middle-income country perspective. BMC Med. 2023;21(1):121.PubMedPubMedCentralCrossRef Wittenauer R, Pecenka C, Baral R. Cost of childhood RSV management and cost-effectiveness of RSV interventions: a systematic review from a low-and middle-income country perspective. BMC Med. 2023;21(1):121.PubMedPubMedCentralCrossRef
94.
go back to reference Falsey AR, Williams K, Gymnopoulou E, Bart S, Ervin J, Bastian AR, et al. Efficacy and safety of an Ad26. RSV. preF-RSV preF protein vaccine in older adults. N Engl J Med. 2023;388(7):609–20.PubMedCrossRef Falsey AR, Williams K, Gymnopoulou E, Bart S, Ervin J, Bastian AR, et al. Efficacy and safety of an Ad26. RSV. preF-RSV preF protein vaccine in older adults. N Engl J Med. 2023;388(7):609–20.PubMedCrossRef
95.
go back to reference Graham BS. The journey to RSV vaccines—heralding an era of structure-based design. N Engl J Med. 2023;388(7):579–81.PubMedCrossRef Graham BS. The journey to RSV vaccines—heralding an era of structure-based design. N Engl J Med. 2023;388(7):579–81.PubMedCrossRef
96.
go back to reference Caidi H, Miao C, Thornburg NJ, Tripp RA, Anderson LJ, Haynes LM. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model. Antiviral Res. 2018;154:149–57.PubMedPubMedCentralCrossRef Caidi H, Miao C, Thornburg NJ, Tripp RA, Anderson LJ, Haynes LM. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model. Antiviral Res. 2018;154:149–57.PubMedPubMedCentralCrossRef
97.
go back to reference Hu M, Bogoyevitch MA, Jans DA. Impact of respiratory syncytial virus infection on host functions: implications for antiviral strategies. Physiol Rev. 2020;100(4):1527–94.PubMedCrossRef Hu M, Bogoyevitch MA, Jans DA. Impact of respiratory syncytial virus infection on host functions: implications for antiviral strategies. Physiol Rev. 2020;100(4):1527–94.PubMedCrossRef
98.
99.
go back to reference Linssen RSN, Sridhar A, Moreni G, van der Wel NN, van Woensel JBM, Wolthers KC, et al. Neutrophil extracellular traps do not induce injury and inflammation in well-differentiated RSV-infected airway epithelium. Cells. 2022;11(5):785.PubMedPubMedCentralCrossRef Linssen RSN, Sridhar A, Moreni G, van der Wel NN, van Woensel JBM, Wolthers KC, et al. Neutrophil extracellular traps do not induce injury and inflammation in well-differentiated RSV-infected airway epithelium. Cells. 2022;11(5):785.PubMedPubMedCentralCrossRef
100.
go back to reference Lin HY, Chang KT, Hung CC, Kuo CH, Hwang SJ, Chen HC, et al. Effects of the mTOR inhibitor rapamycin on monocyte-secreted chemokines. BMC Immunol. 2014;15:37.PubMedPubMedCentralCrossRef Lin HY, Chang KT, Hung CC, Kuo CH, Hwang SJ, Chen HC, et al. Effects of the mTOR inhibitor rapamycin on monocyte-secreted chemokines. BMC Immunol. 2014;15:37.PubMedPubMedCentralCrossRef
101.
go back to reference Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8(1):1–18.CrossRef Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8(1):1–18.CrossRef
102.
go back to reference Londrigan SL, Short KR, Ma J, Gillespie L, Rockman SP, Brooks AG, Reading PC. Infection of mouse macrophages by seasonal influenza viruses can be restricted at the level of virus entry and at a late stage in the virus life cycle. ABSTRACT J Virol. 2015;89(24):12319–29. https://doi.org/10.1128/JVI.01455-15.CrossRef Londrigan SL, Short KR, Ma J, Gillespie L, Rockman SP, Brooks AG, Reading PC. Infection of mouse macrophages by seasonal influenza viruses can be restricted at the level of virus entry and at a late stage in the virus life cycle. ABSTRACT J Virol. 2015;89(24):12319–29. https://​doi.​org/​10.​1128/​JVI.​01455-15.CrossRef
103.
go back to reference Laporte M, Stevaert A, Raeymaekers V, Boogaerts T, Nehlmeier I, Chiu W, Benkheil M, Vanaudenaerde B, Pöhlmann S, Naesens L. Hemagglutinin cleavability acid stability and temperature dependence optimize influenza B virus for replication in human airways. ABSTRACT J Virol. 2019;94(1):e01430-19. https://doi.org/10.1128/JVI.01430-19.CrossRef Laporte M, Stevaert A, Raeymaekers V, Boogaerts T, Nehlmeier I, Chiu W, Benkheil M, Vanaudenaerde B, Pöhlmann S, Naesens L. Hemagglutinin cleavability acid stability and temperature dependence optimize influenza B virus for replication in human airways. ABSTRACT J Virol. 2019;94(1):e01430-19. https://​doi.​org/​10.​1128/​JVI.​01430-19.CrossRef
104.
go back to reference Gounder AP, Boon A. Influenza pathogenesis: the effect of host factors on severity of disease. J Immunol. 2019;202(2):341–50.PubMedCrossRef Gounder AP, Boon A. Influenza pathogenesis: the effect of host factors on severity of disease. J Immunol. 2019;202(2):341–50.PubMedCrossRef
105.
go back to reference Maemura T, Fukuyama S, Kawaoka Y. High levels of miR-483-3p are present in serum exosomes upon infection of mice with highly pathogenic avian influenza virus. Front Microbiol. 2020;11:144.PubMedPubMedCentralCrossRef Maemura T, Fukuyama S, Kawaoka Y. High levels of miR-483-3p are present in serum exosomes upon infection of mice with highly pathogenic avian influenza virus. Front Microbiol. 2020;11:144.PubMedPubMedCentralCrossRef
106.
go back to reference Bedford JG, Infusini G, Dagley LF, Villalon-Letelier F, Zheng MZ, Bennett-Wood V, et al. Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response. Front Immunol. 2020;11:887.PubMedPubMedCentralCrossRef Bedford JG, Infusini G, Dagley LF, Villalon-Letelier F, Zheng MZ, Bennett-Wood V, et al. Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response. Front Immunol. 2020;11:887.PubMedPubMedCentralCrossRef
107.
go back to reference Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a new axis in the genesis of respiratory diseases: possible therapeutic implications. Int J Mol Sci. 2023;24(2):1783.PubMedPubMedCentralCrossRef Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a new axis in the genesis of respiratory diseases: possible therapeutic implications. Int J Mol Sci. 2023;24(2):1783.PubMedPubMedCentralCrossRef
108.
go back to reference Welch M, Park J, Harmon K, Zhang J, Piñeyro P, Giménez-Lirola L, et al. Pathogenesis of a novel porcine parainfluenza virus type 1 isolate in conventional and colostrum deprived/caesarean derived pigs. Virology. 2021;563:88–97.PubMedCrossRef Welch M, Park J, Harmon K, Zhang J, Piñeyro P, Giménez-Lirola L, et al. Pathogenesis of a novel porcine parainfluenza virus type 1 isolate in conventional and colostrum deprived/caesarean derived pigs. Virology. 2021;563:88–97.PubMedCrossRef
109.
go back to reference Schomacker H, Schaap-Nutt A, Collins PL, Schmidt AC. Pathogenesis of acute respiratory illness caused by human parainfluenza viruses. Curr Opin Virol. 2012;2(3):294–9.PubMedPubMedCentralCrossRef Schomacker H, Schaap-Nutt A, Collins PL, Schmidt AC. Pathogenesis of acute respiratory illness caused by human parainfluenza viruses. Curr Opin Virol. 2012;2(3):294–9.PubMedPubMedCentralCrossRef
110.
go back to reference Tang F, Yang T-L. MicroRNA-126 alleviates endothelial cells injury in atherosclerosis by restoring autophagic flux via inhibiting of PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 2018;495(1):1482–9.PubMedCrossRef Tang F, Yang T-L. MicroRNA-126 alleviates endothelial cells injury in atherosclerosis by restoring autophagic flux via inhibiting of PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 2018;495(1):1482–9.PubMedCrossRef
111.
go back to reference Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci. 2010;107(14):6328–33.PubMedPubMedCentralCrossRef Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci. 2010;107(14):6328–33.PubMedPubMedCentralCrossRef
112.
go back to reference Real-Hohn A, Groznica M, Kontaxis G, Zhu R, Chaves OA, Vazquez L, et al. Stabilization of the quadruplex-forming G-rich sequences in the rhinovirus genome inhibits uncoating— role of Na+ and K+. Viruses. 2023;15(4):1003.PubMedPubMedCentralCrossRef Real-Hohn A, Groznica M, Kontaxis G, Zhu R, Chaves OA, Vazquez L, et al. Stabilization of the quadruplex-forming G-rich sequences in the rhinovirus genome inhibits uncoating— role of Na+ and K+. Viruses. 2023;15(4):1003.PubMedPubMedCentralCrossRef
113.
go back to reference Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental antiviral therapeutic studies for human rhinovirus infections. J Exp Pharmacol. 2021:645–59. Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental antiviral therapeutic studies for human rhinovirus infections. J Exp Pharmacol. 2021:645–59.
115.
go back to reference Blaas D, Fuchs R. Mechanism of human rhinovirus infections. Mol Cell Pediatr. 2016;3(1):1–4.CrossRef Blaas D, Fuchs R. Mechanism of human rhinovirus infections. Mol Cell Pediatr. 2016;3(1):1–4.CrossRef
116.
go back to reference Montgomery ST, Frey DL, Mall MA, Stick SM, Kicic A, Arest CF. Rhinovirus infection is associated with airway epithelial cell necrosis and inflammation via interleukin-1 in young children with cystic fibrosis. Front Immunol. 2020;11:596.PubMedPubMedCentralCrossRef Montgomery ST, Frey DL, Mall MA, Stick SM, Kicic A, Arest CF. Rhinovirus infection is associated with airway epithelial cell necrosis and inflammation via interleukin-1 in young children with cystic fibrosis. Front Immunol. 2020;11:596.PubMedPubMedCentralCrossRef
117.
118.
go back to reference Gutierrez MJ, Gomez JL, Perez GF, Pancham K, Val S, Pillai DK, et al. Airway secretory microRNAome changes during rhinovirus infection in early childhood. PLoS ONE. 2016;11(9):e0162244.PubMedPubMedCentralCrossRef Gutierrez MJ, Gomez JL, Perez GF, Pancham K, Val S, Pillai DK, et al. Airway secretory microRNAome changes during rhinovirus infection in early childhood. PLoS ONE. 2016;11(9):e0162244.PubMedPubMedCentralCrossRef
119.
go back to reference Jantaratrirat S, Boonarkart C, Ruangrung K, Suptawiwat O, Auewarakul P. Microparticle release from cell lines and its anti-influenza activity. Viral Immunol. 2018;31(6):447–56.PubMedCrossRef Jantaratrirat S, Boonarkart C, Ruangrung K, Suptawiwat O, Auewarakul P. Microparticle release from cell lines and its anti-influenza activity. Viral Immunol. 2018;31(6):447–56.PubMedCrossRef
122.
go back to reference Lanyu Z, Feilong H. Emerging role of extracellular vesicles in lung injury and inflammation. Biomed Pharmacother. 2019;113:108748.PubMedCrossRef Lanyu Z, Feilong H. Emerging role of extracellular vesicles in lung injury and inflammation. Biomed Pharmacother. 2019;113:108748.PubMedCrossRef
123.
go back to reference Martinez-Bravo M-J, Wahlund CJ, Qazi KR, Moulder R, Lukic A, Rådmark O, et al. Pulmonary sarcoidosis is associated with exosomal vitamin D-binding protein and inflammatory molecules. J Allergy Clin Immunol. 2017;139(4):1186–94.PubMedCrossRef Martinez-Bravo M-J, Wahlund CJ, Qazi KR, Moulder R, Lukic A, Rådmark O, et al. Pulmonary sarcoidosis is associated with exosomal vitamin D-binding protein and inflammatory molecules. J Allergy Clin Immunol. 2017;139(4):1186–94.PubMedCrossRef
124.
go back to reference Askenase PW. COVID-19 therapy with mesenchymal stromal cells (MSC) and convalescent plasma must consider exosome involvement: do the exosomes in convalescent plasma antagonize the weak immune antibodies? J Extracell Vesicles. 2020;10(1):e12004.PubMedPubMedCentralCrossRef Askenase PW. COVID-19 therapy with mesenchymal stromal cells (MSC) and convalescent plasma must consider exosome involvement: do the exosomes in convalescent plasma antagonize the weak immune antibodies? J Extracell Vesicles. 2020;10(1):e12004.PubMedPubMedCentralCrossRef
125.
go back to reference Pesce E, Manfrini N, Cordiglieri C, Santi S, Bandera A, Gobbini A, et al. Exosomes recovered from the plasma of COVID-19 patients expose SARS-CoV-2 spike-derived fragments and contribute to the adaptive immune response. Front Immunol. 2022;12:5775.CrossRef Pesce E, Manfrini N, Cordiglieri C, Santi S, Bandera A, Gobbini A, et al. Exosomes recovered from the plasma of COVID-19 patients expose SARS-CoV-2 spike-derived fragments and contribute to the adaptive immune response. Front Immunol. 2022;12:5775.CrossRef
126.
go back to reference Rosell A, Havervall S, Von Meijenfeldt F, Hisada Y, Aguilera K, Grover SP, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality—brief report. Arterioscler Thromb Vasc Biol. 2021;41(2):878–82.PubMedCrossRef Rosell A, Havervall S, Von Meijenfeldt F, Hisada Y, Aguilera K, Grover SP, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality—brief report. Arterioscler Thromb Vasc Biol. 2021;41(2):878–82.PubMedCrossRef
127.
go back to reference Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40.PubMedPubMedCentralCrossRef Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40.PubMedPubMedCentralCrossRef
128.
go back to reference Sur S, Khatun M, Steele R, Isbell TS, Ray R, Ray RB. Exosomes from COVID-19 patients carry tenascin-C and fibrinogen-β in triggering inflammatory signals in cells of distant organ. Int J Mol Sci. 2021;22(6):3184.PubMedPubMedCentralCrossRef Sur S, Khatun M, Steele R, Isbell TS, Ray R, Ray RB. Exosomes from COVID-19 patients carry tenascin-C and fibrinogen-β in triggering inflammatory signals in cells of distant organ. Int J Mol Sci. 2021;22(6):3184.PubMedPubMedCentralCrossRef
130.
go back to reference Stawicki SP, Jeanmonod R, Miller AC, et al. The 2019–2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: A joint american college of academic international medicine-world academic council of emergency medicine multidisciplinary COVID-19 working group consensus paper. J Global Infect Dis. 2020;12(2):47. https://doi.org/10.4103/jgid.jgid_86_20.CrossRef Stawicki SP, Jeanmonod R, Miller AC, et al. The 2019–2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: A joint american college of academic international medicine-world academic council of emergency medicine multidisciplinary COVID-19 working group consensus paper. J Global Infect Dis. 2020;12(2):47. https://​doi.​org/​10.​4103/​jgid.​jgid_​86_​20.CrossRef
131.
132.
go back to reference Ipinmoroti AO, Matthews QL. Extracellular vesicles: roles in human viral infections, immune-diagnostic, and therapeutic applications. Pathogens. 2020;9(12):1056.PubMedPubMedCentralCrossRef Ipinmoroti AO, Matthews QL. Extracellular vesicles: roles in human viral infections, immune-diagnostic, and therapeutic applications. Pathogens. 2020;9(12):1056.PubMedPubMedCentralCrossRef
134.
go back to reference Ipinmoroti AO, Crenshaw BJ, Pandit R, Kumar S, Sims B, Matthews QL. Human adenovirus serotype 3 infection modulates the biogenesis and composition of lung cell-derived extracellular vesicles. J Immunol Res. 2021;2021. Ipinmoroti AO, Crenshaw BJ, Pandit R, Kumar S, Sims B, Matthews QL. Human adenovirus serotype 3 infection modulates the biogenesis and composition of lung cell-derived extracellular vesicles. J Immunol Res. 2021;2021.
135.
go back to reference Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther. 2006;13(2):289–300.PubMedCrossRef Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther. 2006;13(2):289–300.PubMedCrossRef
136.
go back to reference Hong Y, Truong AD, Vu TH, Lee S, Heo J, Kang S, et al. Exosomes from H5N1 avian influenza virus-infected chickens regulate antiviral immune responses of chicken immune cells. Dev Comp Immunol. 2022;130:104368.PubMedCrossRef Hong Y, Truong AD, Vu TH, Lee S, Heo J, Kang S, et al. Exosomes from H5N1 avian influenza virus-infected chickens regulate antiviral immune responses of chicken immune cells. Dev Comp Immunol. 2022;130:104368.PubMedCrossRef
137.
go back to reference Maemura T, Fukuyama S, Sugita Y, Lopes TJS, Nakao T, Noda T, et al. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis. 2018;217(9):1372–82.PubMedCrossRef Maemura T, Fukuyama S, Sugita Y, Lopes TJS, Nakao T, Noda T, et al. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis. 2018;217(9):1372–82.PubMedCrossRef
138.
go back to reference Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, et al. Exosomes released by influenza-virus-infected cells carry factors capable of suppressing immune defense genes in Naïve cells. Viruses. 2022;14(12):2690.PubMedPubMedCentralCrossRef Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, et al. Exosomes released by influenza-virus-infected cells carry factors capable of suppressing immune defense genes in Naïve cells. Viruses. 2022;14(12):2690.PubMedPubMedCentralCrossRef
139.
go back to reference Mao L, Liang P, Li W, Zhang S, Liu M, Yang L, et al. Exosomes promote caprine parainfluenza virus type 3 infection by inhibiting autophagy. J Gen Virol. 2020;101(7):717–34.PubMedCrossRef Mao L, Liang P, Li W, Zhang S, Liu M, Yang L, et al. Exosomes promote caprine parainfluenza virus type 3 infection by inhibiting autophagy. J Gen Virol. 2020;101(7):717–34.PubMedCrossRef
140.
go back to reference Mills J. Investigating the role of tenascin-C and extracellular vesicles in human rhinovirus induced exacerbations of asthma. Sheffield: University of Sheffield; 2018. Mills J. Investigating the role of tenascin-C and extracellular vesicles in human rhinovirus induced exacerbations of asthma. Sheffield: University of Sheffield; 2018.
141.
go back to reference Mills JT, Schwenzer A, Marsh EK, Edwards MR, Sabroe I, Midwood KS, et al. Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection. Front Immunol. 2019;10:1987.PubMedPubMedCentralCrossRef Mills JT, Schwenzer A, Marsh EK, Edwards MR, Sabroe I, Midwood KS, et al. Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection. Front Immunol. 2019;10:1987.PubMedPubMedCentralCrossRef
142.
go back to reference Kim S-H, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis 1. J Immunol. 2005;174(10):6440–8.PubMedCrossRef Kim S-H, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis 1. J Immunol. 2005;174(10):6440–8.PubMedCrossRef
Metadata
Title
Exosome-mediated regulation of inflammatory pathway during respiratory viral disease
Authors
Hamidreza Gheitasi
Mohammad Sabbaghian
Ali Akbar Shekarchi
Amir Ali Mirmazhary
Vahdat Poortahmasebi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2024
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-024-02297-y

Other articles of this Issue 1/2024

Virology Journal 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine