Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry

Authors: Lisa Henß, Simon Beck, Tatjana Weidner, Nadine Biedenkopf, Katja Sliva, Christopher Weber, Stephan Becker, Barbara S. Schnierle

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity.

Methods

We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus.

Results

Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection.

Conclusion

Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.
Literature
3.
go back to reference Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8:491–500.CrossRefPubMed Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8:491–500.CrossRefPubMed
8.
go back to reference Voss JE, Vaney M-C, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468:709–12. doi:10.1038/nature09555.CrossRefPubMed Voss JE, Vaney M-C, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468:709–12. doi:10.​1038/​nature09555.CrossRefPubMed
11.
go back to reference Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol. 1998;72:3155–60.PubMedPubMedCentral Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol. 1998;72:3155–60.PubMedPubMedCentral
14.
go back to reference Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev. 2002;22:1–25.CrossRefPubMed Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev. 2002;22:1–25.CrossRefPubMed
18.
go back to reference Mitsuya H, Popovic M, Yarchoan R, Matsushita S, Gallo RC, Broder S. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science. 1984;226:172–4.CrossRefPubMed Mitsuya H, Popovic M, Yarchoan R, Matsushita S, Gallo RC, Broder S. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science. 1984;226:172–4.CrossRefPubMed
19.
go back to reference Yahi N, Sabatier JM, Nickel P, Mabrouk K, Gonzalez-Scarano F, Fantini J. Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J Biol Chem. 1994;269:24349–53.PubMed Yahi N, Sabatier JM, Nickel P, Mabrouk K, Gonzalez-Scarano F, Fantini J. Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J Biol Chem. 1994;269:24349–53.PubMed
20.
go back to reference Aguilar HC, Anderson WF, Cannon PM. Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R Peptide. J Virol. 2003;77:1281–91.CrossRefPubMedPubMedCentral Aguilar HC, Anderson WF, Cannon PM. Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R Peptide. J Virol. 2003;77:1281–91.CrossRefPubMedPubMedCentral
21.
go back to reference Kessler HA, Pottage JC, Trenholme GM, Benson CA, Levin S. Effects of suramin on in vitro HBsAg production by PLC/PRF/5 cells and hepatitis B virus DNA polymerase activity. AIDS Res. 1986;2:63–72.CrossRefPubMed Kessler HA, Pottage JC, Trenholme GM, Benson CA, Levin S. Effects of suramin on in vitro HBsAg production by PLC/PRF/5 cells and hepatitis B virus DNA polymerase activity. AIDS Res. 1986;2:63–72.CrossRefPubMed
22.
go back to reference Garson JA, Lubach D, Passas J, Whitby K, Grant PR. Suramin blocks hepatitis C binding to human hepatoma cells in vitro. J Med Virol. 1999;57:238–42.CrossRefPubMed Garson JA, Lubach D, Passas J, Whitby K, Grant PR. Suramin blocks hepatitis C binding to human hepatoma cells in vitro. J Med Virol. 1999;57:238–42.CrossRefPubMed
28.
29.
go back to reference Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.PubMedPubMedCentral Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.PubMedPubMedCentral
30.
go back to reference Agarwal S, Nikolai B, Yamaguchi T, Lech P, Somia NV, N1 - Department of Genetics, Cell Biology, and Development, Institute of Human Genetics, University of Minnesota, 420 Delaware Street SE, MMC 206, Minneapolis, MN 55455, USAFAgarwal, Sumit. Construction and use of retroviral vectors encoding the toxic gene barnase. Mol Ther. 2006;14:555–63.CrossRefPubMed Agarwal S, Nikolai B, Yamaguchi T, Lech P, Somia NV, N1 - Department of Genetics, Cell Biology, and Development, Institute of Human Genetics, University of Minnesota, 420 Delaware Street SE, MMC 206, Minneapolis, MN 55455, USAFAgarwal, Sumit. Construction and use of retroviral vectors encoding the toxic gene barnase. Mol Ther. 2006;14:555–63.CrossRefPubMed
31.
go back to reference Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 1995;23:628–33.CrossRefPubMedPubMedCentral Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 1995;23:628–33.CrossRefPubMedPubMedCentral
33.
35.
go back to reference Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan, Sean P J. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 2009;5:e1000394. doi:10.1371/journal.ppat.1000394 Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan, Sean P J. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 2009;5:e1000394. doi:10.​1371/​journal.​ppat.​1000394
37.
go back to reference Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology. 2007;46:1759–68. doi:10.1002/hep.21896.CrossRefPubMed Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology. 2007;46:1759–68. doi:10.​1002/​hep.​21896.CrossRefPubMed
38.
go back to reference Eisenberger MA, Sinibaldi V, Reyno L. Suramin. Cancer Pract. 1995;3:187–9.PubMed Eisenberger MA, Sinibaldi V, Reyno L. Suramin. Cancer Pract. 1995;3:187–9.PubMed
39.
go back to reference McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem. 2008;8:1384–94.CrossRefPubMed McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem. 2008;8:1384–94.CrossRefPubMed
40.
42.
go back to reference Stein CA, LaRocca RV, Thomas R, McAtee N, Myers CE. Suramin: an anticancer drug with a unique mechanism of action. J Clin Oncol. 1989;7:499–508.PubMed Stein CA, LaRocca RV, Thomas R, McAtee N, Myers CE. Suramin: an anticancer drug with a unique mechanism of action. J Clin Oncol. 1989;7:499–508.PubMed
43.
go back to reference Balzarini J, Mitsuya H, de Clercq E, Broder S. Aurintricarboxylic acid and Evans Blue represent two different classes of anionic compounds which selectively inhibit the cytopathogenicity of human T-cell lymphotropic virus type III/lymphadenopathy-associated virus. Biochem Biophys Res Commun. 1986;136:64–71.CrossRefPubMed Balzarini J, Mitsuya H, de Clercq E, Broder S. Aurintricarboxylic acid and Evans Blue represent two different classes of anionic compounds which selectively inhibit the cytopathogenicity of human T-cell lymphotropic virus type III/lymphadenopathy-associated virus. Biochem Biophys Res Commun. 1986;136:64–71.CrossRefPubMed
44.
go back to reference Hawking F. Suramin: with special reference to onchocerciasis. Adv Pharmacol Chemother. 1978;15:289–322.CrossRefPubMed Hawking F. Suramin: with special reference to onchocerciasis. Adv Pharmacol Chemother. 1978;15:289–322.CrossRefPubMed
46.
go back to reference Horne 3rd MK, Stein CA, La Rocca RV, Myers CE. Circulating glycosaminoglycan anticoagulants associated with suramin treatment. Blood. 1988;71:273–9.PubMed Horne 3rd MK, Stein CA, La Rocca RV, Myers CE. Circulating glycosaminoglycan anticoagulants associated with suramin treatment. Blood. 1988;71:273–9.PubMed
48.
go back to reference Gehring G, Rohrmann K, Atenchong N, Mittler E, Becker S, Dahlmann F, et al. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother. 2014;69:2123–31. doi:10.1093/jac/dku091.CrossRefPubMed Gehring G, Rohrmann K, Atenchong N, Mittler E, Becker S, Dahlmann F, et al. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother. 2014;69:2123–31. doi:10.​1093/​jac/​dku091.CrossRefPubMed
Metadata
Title
Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry
Authors
Lisa Henß
Simon Beck
Tatjana Weidner
Nadine Biedenkopf
Katja Sliva
Christopher Weber
Stephan Becker
Barbara S. Schnierle
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0607-2

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine