Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2022

Open Access 01-12-2022 | Stroke | Review

Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review

Authors: Ahad Behboodi, Walker A. Lee, Victoria S. Hinchberger, Diane L. Damiano

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2022

Login to get access

Abstract

Background

Brain–computer interfaces (BCI), initially designed to bypass the peripheral motor system to externally control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable, but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which mobile BCI-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neurorehabilitation applications?

Methods

We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were retained. Data extraction included participant characteristics, study design details and motor outcomes.

Results

From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT; n = 6) which were then utilized to assess effectiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimulation feedback paradigms. Notably, FMA outcomes were positively correlated with training dose.

Conclusion

This review on BCI-based neurofeedback training confirms previous findings of effectiveness in improving motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning paradigms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation. More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other evidence-based training strategies are warranted.
Literature
1.
go back to reference Tariq M, Trivailo PM, Simic M. Eeg-based bci control schemes for lower-limb assistive-robots. Front Human Neurosci. 2018;312. Tariq M, Trivailo PM, Simic M. Eeg-based bci control schemes for lower-limb assistive-robots. Front Human Neurosci. 2018;312.
6.
go back to reference Sonuga-Barke E, Brandeis D, Holtmann M, Cortese S. Computer-based cognitive training for adhd: a review of current evidence. Child Adolesc Psychiatr Clin. 2014;23(4):807–24.CrossRef Sonuga-Barke E, Brandeis D, Holtmann M, Cortese S. Computer-based cognitive training for adhd: a review of current evidence. Child Adolesc Psychiatr Clin. 2014;23(4):807–24.CrossRef
7.
go back to reference Evans JR, Budzynski TH, Budzynski HK, Abarbanel A. Introduction to quantitative EEG and neurofeedback: advanced theory and applications. Academic Press; 2009. Evans JR, Budzynski TH, Budzynski HK, Abarbanel A. Introduction to quantitative EEG and neurofeedback: advanced theory and applications. Academic Press; 2009.
8.
go back to reference Hurt E, Arnold LE, Lofthouse N. Quantitative eeg neurofeedback for the treatment of pediatric attention-deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy. Child Adolesc Psychiatr Clin. 2014;23(3):465–86.CrossRef Hurt E, Arnold LE, Lofthouse N. Quantitative eeg neurofeedback for the treatment of pediatric attention-deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy. Child Adolesc Psychiatr Clin. 2014;23(3):465–86.CrossRef
9.
go back to reference McCarthy-Jones S. Taking back the brain: could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia? Schizophr Bull. 2012;38(4):678–82.PubMedPubMedCentralCrossRef McCarthy-Jones S. Taking back the brain: could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia? Schizophr Bull. 2012;38(4):678–82.PubMedPubMedCentralCrossRef
10.
go back to reference Othmer S. Progress in neurofeedback for the autism spectrum. In: 38th Annual Meeting of the Association for Applied Psychophysiology Biofeedback. Monterey, Canada, pp. 15–18. Othmer S. Progress in neurofeedback for the autism spectrum. In: 38th Annual Meeting of the Association for Applied Psychophysiology Biofeedback. Monterey, Canada, pp. 15–18.
11.
go back to reference Horrell T, El-Baz A, Baruth J, Tasman A, Sokhadze G, Stewart C, Sokhadze E. Neurofeedback effects on evoked and induced eeg gamma band reactivity to drug-related cues in cocaine addiction. J Neurother. 2010;14(3):195–216.PubMedPubMedCentralCrossRef Horrell T, El-Baz A, Baruth J, Tasman A, Sokhadze G, Stewart C, Sokhadze E. Neurofeedback effects on evoked and induced eeg gamma band reactivity to drug-related cues in cocaine addiction. J Neurother. 2010;14(3):195–216.PubMedPubMedCentralCrossRef
13.
go back to reference Walker JE. Using qeeg-guided neurofeedback for epilepsy versus standardized protocols: enhanced effectiveness? Appl Psychophysiol Biofeedback. 2010;35(1):29–30.PubMedCrossRef Walker JE. Using qeeg-guided neurofeedback for epilepsy versus standardized protocols: enhanced effectiveness? Appl Psychophysiol Biofeedback. 2010;35(1):29–30.PubMedCrossRef
14.
go back to reference Ibric VL, Dragomirescu LG. Neurofeedback in pain management. Introduction to quantitative EEG and neurofeedback: Advanced theory and applications 2nd edn., 2009;417–451. Ibric VL, Dragomirescu LG. Neurofeedback in pain management. Introduction to quantitative EEG and neurofeedback: Advanced theory and applications 2nd edn., 2009;417–451.
15.
go back to reference Marzbani H, Marateb HR, Mansourian M. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016;7(2):143.PubMedPubMedCentral Marzbani H, Marateb HR, Mansourian M. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosci. 2016;7(2):143.PubMedPubMedCentral
16.
go back to reference Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18(2):86–100.PubMedCrossRef Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18(2):86–100.PubMedCrossRef
17.
go back to reference Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. Handb Clin Neurol. 2022;184:299–315.PubMedCrossRef Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. Handb Clin Neurol. 2022;184:299–315.PubMedCrossRef
18.
go back to reference O’Leary GH, Jenkins DD, Coker-Bolt P, George MS, Kautz S, Bikson M, Gillick BT, Badran BW. From adults to pediatrics: a review noninvasive brain stimulation (nibs) to facilitate recovery from brain injury. Prog Brain Res. 2021;264:287–322.PubMedPubMedCentralCrossRef O’Leary GH, Jenkins DD, Coker-Bolt P, George MS, Kautz S, Bikson M, Gillick BT, Badran BW. From adults to pediatrics: a review noninvasive brain stimulation (nibs) to facilitate recovery from brain injury. Prog Brain Res. 2021;264:287–322.PubMedPubMedCentralCrossRef
26.
go back to reference Mrachacz-Kersting N, Stevenson AJ, Jørgensen HR, Severinsen KE, Aliakbaryhosseinabadi S, Jiang N, Farina D. Brain state-dependent stimulation boosts functional recovery following stroke. Ann Neurol. 2019;85(1):84–95.PubMedCrossRef Mrachacz-Kersting N, Stevenson AJ, Jørgensen HR, Severinsen KE, Aliakbaryhosseinabadi S, Jiang N, Farina D. Brain state-dependent stimulation boosts functional recovery following stroke. Ann Neurol. 2019;85(1):84–95.PubMedCrossRef
31.
go back to reference Millán JD, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kübler A, Leeb R, Neuper C, Müller KR, Mattia D. Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 2010;4. https://doi.org/10.3389/fnins.2010.00161. Millán JD, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kübler A, Leeb R, Neuper C, Müller KR, Mattia D. Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 2010;4. https://​doi.​org/​10.​3389/​fnins.​2010.​00161.
34.
go back to reference Shindo K, Kawashima K, Ushiba J, Ota N, Ito M, Ota T, Kimura A, Liu M. Effects of neurofeedback training with an electroencephalogram-based brain–computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med. 2011;43(10):951–7. https://doi.org/10.2340/16501977-0859.PubMedCrossRef Shindo K, Kawashima K, Ushiba J, Ota N, Ito M, Ota T, Kimura A, Liu M. Effects of neurofeedback training with an electroencephalogram-based brain–computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med. 2011;43(10):951–7. https://​doi.​org/​10.​2340/​16501977-0859.PubMedCrossRef
35.
36.
go back to reference Bobrov P, Biryukova E, Polyaev B, Lajsheva O, Usachjova E, Sokolova A, Mihailova D, Dement’Eva K, Fedotova I. Rehabilitation of patients with cerebral palsy using hand exoskeleton controlled by brain–computer interface. Bull Russian State Med Univ. 2020;(4). Bobrov P, Biryukova E, Polyaev B, Lajsheva O, Usachjova E, Sokolova A, Mihailova D, Dement’Eva K, Fedotova I. Rehabilitation of patients with cerebral palsy using hand exoskeleton controlled by brain–computer interface. Bull Russian State Med Univ. 2020;(4).
38.
go back to reference Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JdR, Allison B, Graimann B, Popescu F, Blankertz B, Müller K-R. Brain–computer interfacing for intelligent systems. IEEE Intell Syst. 2008;23(3):72–9.CrossRef Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JdR, Allison B, Graimann B, Popescu F, Blankertz B, Müller K-R. Brain–computer interfacing for intelligent systems. IEEE Intell Syst. 2008;23(3):72–9.CrossRef
39.
go back to reference Zhang X, Guo Y, Gao B, Long J. Alpha frequency intervention by electrical stimulation to improve performance in mu-based bci. IEEE Trans Neural Syst Rehabil Eng. 2020;28(6):1262–70.PubMedCrossRef Zhang X, Guo Y, Gao B, Long J. Alpha frequency intervention by electrical stimulation to improve performance in mu-based bci. IEEE Trans Neural Syst Rehabil Eng. 2020;28(6):1262–70.PubMedCrossRef
40.
41.
go back to reference ...Remsik AB, Williams JL, Gjini K, Dodd K, Thoma J, Jacobson T, Walczak M, McMillan M, Rajan S, Young BM, Nigogosyan Z, Advani H, Mohanty R, Tellapragada N, Allen J, Mazrooyisebdani M, Walton LM, van Kan PLE, Kang TJ, Sattin JA, Nair VA, Edwards DF, Williams JC, Prabhakaran V. Ipsilesional mu rhythm desynchronization and changes in motor behavior following post stroke bci intervention for motor rehabilitation. Front Neurosci. 2019;13:53. https://doi.org/10.3389/fnins.2019.00053.PubMedPubMedCentralCrossRef ...Remsik AB, Williams JL, Gjini K, Dodd K, Thoma J, Jacobson T, Walczak M, McMillan M, Rajan S, Young BM, Nigogosyan Z, Advani H, Mohanty R, Tellapragada N, Allen J, Mazrooyisebdani M, Walton LM, van Kan PLE, Kang TJ, Sattin JA, Nair VA, Edwards DF, Williams JC, Prabhakaran V. Ipsilesional mu rhythm desynchronization and changes in motor behavior following post stroke bci intervention for motor rehabilitation. Front Neurosci. 2019;13:53. https://​doi.​org/​10.​3389/​fnins.​2019.​00053.PubMedPubMedCentralCrossRef
50.
go back to reference Cervera MA, Soekadar SR, Ushiba J, Millán JdR, Liu M, Birbaumer N, Garipelli G. Brain–computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Annal Clin Transl Neurol. 2018;5(5):651–63.CrossRef Cervera MA, Soekadar SR, Ushiba J, Millán JdR, Liu M, Birbaumer N, Garipelli G. Brain–computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Annal Clin Transl Neurol. 2018;5(5):651–63.CrossRef
51.
go back to reference Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MD, Horsley T, Weeks L. Prisma extension for scoping reviews (prisma-scr): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.PubMedCrossRef Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MD, Horsley T, Weeks L. Prisma extension for scoping reviews (prisma-scr): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.PubMedCrossRef
52.
go back to reference Peters MD, Godfrey C, McInerney P, Baldini Soares C, Khalil H, Parker D, Munn Z. Chapter 11: scoping reviews. Joanna Briggs Institute Reviewer’s Manual. The Joanna Briggs Institute; 2017. Peters MD, Godfrey C, McInerney P, Baldini Soares C, Khalil H, Parker D, Munn Z. Chapter 11: scoping reviews. Joanna Briggs Institute Reviewer’s Manual. The Joanna Briggs Institute; 2017.
53.
go back to reference Young BM, Nigogosyan Z, Walton LM, Remsik A, Song J, Nair VA, Tyler ME, Edwards DF, Caldera K, Sattin JA, Williams JC, Prabhakaran V. Dose-response relationships using brain–computer interface technology impact stroke rehabilitation. Front Human Neurosci. 2015;9. https://doi.org/10.3389/fnhum.2015.00361. Young BM, Nigogosyan Z, Walton LM, Remsik A, Song J, Nair VA, Tyler ME, Edwards DF, Caldera K, Sattin JA, Williams JC, Prabhakaran V. Dose-response relationships using brain–computer interface technology impact stroke rehabilitation. Front Human Neurosci. 2015;9. https://​doi.​org/​10.​3389/​fnhum.​2015.​00361.
55.
go back to reference ...Remsik AB, Dodd K, Leroy JW, Thoma J, Jacobson T, Allen JD, Advani H, Mohanty R, McMillan M, Rajan S, Walczak M, Young BM, Nigogosyan Z, Rivera CA, Mazrooyisebdani M, Tellapragada N, Walton LM, Gjini K, Van Kan PLE, Kang TJ, Sattin JA, Nair VA, Edwards DF, Williams JC, Prabhakaran V. Behavioral outcomes following braincomputer interface intervention for upper extremity rehabilitation in stroke: a randomized controlled trial. Front Neurosci. 2018;12. https://doi.org/10.3389/fnins.2018.00752. ...Remsik AB, Dodd K, Leroy JW, Thoma J, Jacobson T, Allen JD, Advani H, Mohanty R, McMillan M, Rajan S, Walczak M, Young BM, Nigogosyan Z, Rivera CA, Mazrooyisebdani M, Tellapragada N, Walton LM, Gjini K, Van Kan PLE, Kang TJ, Sattin JA, Nair VA, Edwards DF, Williams JC, Prabhakaran V. Behavioral outcomes following braincomputer interface intervention for upper extremity rehabilitation in stroke: a randomized controlled trial. Front Neurosci. 2018;12. https://​doi.​org/​10.​3389/​fnins.​2018.​00752.
57.
go back to reference Young BM, Nigogosyan Z, Remsik A, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain–computer interface device. Front Neuroeng. 2014;7:25.PubMedPubMedCentral Young BM, Nigogosyan Z, Remsik A, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain–computer interface device. Front Neuroeng. 2014;7:25.PubMedPubMedCentral
58.
go back to reference Young BM, Nigogosyan Z, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K, Sattin JA. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain–computer interface. Front Neuroeng. 2014;7:26.PubMedPubMedCentral Young BM, Nigogosyan Z, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K, Sattin JA. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain–computer interface. Front Neuroeng. 2014;7:26.PubMedPubMedCentral
61.
go back to reference Mrachacz-Kersting N, Jiang N, Thomas Stevenson AJ, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, Farina D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain–computer interface. J Neurophysiol. 2016;115(3):1410–21. https://doi.org/10.1152/jn.00918.2015.PubMedCrossRef Mrachacz-Kersting N, Jiang N, Thomas Stevenson AJ, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, Farina D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain–computer interface. J Neurophysiol. 2016;115(3):1410–21. https://​doi.​org/​10.​1152/​jn.​00918.​2015.PubMedCrossRef
62.
go back to reference Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest. 1989;95(2):2–4.CrossRef Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest. 1989;95(2):2–4.CrossRef
66.
68.
go back to reference Ibáñez J, Monge-Pereira E, Molina-Rueda F, Serrano JI, Del Castillo MD, Cuesta-Gómez A, Carratalá-Tejada M, Cano-de-la-Cuerda R, Alguacil-Diego IM, Miangolarra-Page JC, Pons JL. Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci. 2017;11:126. https://doi.org/10.3389/fnins.2017.00126.PubMedPubMedCentralCrossRef Ibáñez J, Monge-Pereira E, Molina-Rueda F, Serrano JI, Del Castillo MD, Cuesta-Gómez A, Carratalá-Tejada M, Cano-de-la-Cuerda R, Alguacil-Diego IM, Miangolarra-Page JC, Pons JL. Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci. 2017;11:126. https://​doi.​org/​10.​3389/​fnins.​2017.​00126.PubMedPubMedCentralCrossRef
73.
go back to reference Jovanovic LI, Kapadia N, Lo L, Zivanovic V, Popovic MR, Marquez-Chin C. Restoration of upper limb function after chronic severe hemiplegia: a case report on the feasibility of a brain–computer interface-triggered functional electrical stimulation therapy. Am J Phys Med Rehabil. 2020;99(3):35–40. https://doi.org/10.1097/phm.0000000000001163.CrossRef Jovanovic LI, Kapadia N, Lo L, Zivanovic V, Popovic MR, Marquez-Chin C. Restoration of upper limb function after chronic severe hemiplegia: a case report on the feasibility of a brain–computer interface-triggered functional electrical stimulation therapy. Am J Phys Med Rehabil. 2020;99(3):35–40. https://​doi.​org/​10.​1097/​phm.​0000000000001163​.CrossRef
78.
go back to reference Mrachacz-Kersting N, Jiang N, Dremstrup K, Farina D. A novel brain-computer interface for chronic stroke patients. In: Christoph Guger ECL, Brendan Allison (eds) Brain–computer interface research: a state-of-the-art summary 2. Biosystems and Biorobotics, vol. 6, pp. 51–61. Springer, Berlin, Heidelberg 2014. https://doi.org/10.1007/978-3-642-54707-2_6. Mrachacz-Kersting N, Jiang N, Dremstrup K, Farina D. A novel brain-computer interface for chronic stroke patients. In: Christoph Guger ECL, Brendan Allison (eds) Brain–computer interface research: a state-of-the-art summary 2. Biosystems and Biorobotics, vol. 6, pp. 51–61. Springer, Berlin, Heidelberg 2014. https://​doi.​org/​10.​1007/​978-3-642-54707-2_​6.
79.
go back to reference Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell. 2014;159(7):1626–39.PubMedCrossRef Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell. 2014;159(7):1626–39.PubMedCrossRef
80.
82.
go back to reference Bergquist A, Clair J, Lagerquist O, Mang C, Okuma Y, Collins D. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409–26.PubMedCrossRef Bergquist A, Clair J, Lagerquist O, Mang C, Okuma Y, Collins D. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 2011;111(10):2409–26.PubMedCrossRef
83.
go back to reference Bradley CL, Damiano DL. Effects of dopamine on motor recovery and training in adults and children with nonprogressive neurological injuries: a systematic review. Neurorehabil Neural Repair. 2019;33(5):331–44.PubMedPubMedCentralCrossRef Bradley CL, Damiano DL. Effects of dopamine on motor recovery and training in adults and children with nonprogressive neurological injuries: a systematic review. Neurorehabil Neural Repair. 2019;33(5):331–44.PubMedPubMedCentralCrossRef
84.
go back to reference Cruz A, Pires G, Lopes A, Carona C, Nunes UJ. A self-paced bci with a collaborative controller for highly reliable wheelchair driving: Experimental tests with physically disabled individuals. IEEE Trans Human-Mach Syst. 2021;51(2):109–19.CrossRef Cruz A, Pires G, Lopes A, Carona C, Nunes UJ. A self-paced bci with a collaborative controller for highly reliable wheelchair driving: Experimental tests with physically disabled individuals. IEEE Trans Human-Mach Syst. 2021;51(2):109–19.CrossRef
85.
go back to reference Daly I, Billinger M, Laparra-Hernández J, Aloise F, García ML, Faller J, Scherer R, Müller-Putz G. On the control of brain–computer interfaces by users with cerebral palsy. Clin Neurophysiol. 2013;124(9):1787–97.PubMedCrossRef Daly I, Billinger M, Laparra-Hernández J, Aloise F, García ML, Faller J, Scherer R, Müller-Putz G. On the control of brain–computer interfaces by users with cerebral palsy. Clin Neurophysiol. 2013;124(9):1787–97.PubMedCrossRef
86.
go back to reference Bobrov P, Frolov AA, Husek D. In: Kudelka M, Pokorny J, Snasel V, Abraham A (eds) Brain Computer Interface Enhancement by Independent Component Analysis. Advances in Intelligent Systems and Computing, vol. 179, 2013;51–60. https://doi.org/10.1007/978-3-642-31603-6_5. url:\(<\)Go to ISI\(>\)://WOS:000312116400005. Bobrov P, Frolov AA, Husek D. In: Kudelka M, Pokorny J, Snasel V, Abraham A (eds) Brain Computer Interface Enhancement by Independent Component Analysis. Advances in Intelligent Systems and Computing, vol. 179, 2013;51–60. https://​doi.​org/​10.​1007/​978-3-642-31603-6_​5. url:\(<\)Go to ISI\(>\)://WOS:000312116400005.
92.
go back to reference Rayegani S, Raeissadat S, Sedighipour L, Mohammad Rezazadeh I, Bahrami M, Eliaspour D, Khosrawi S. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top Stroke Rehabil. 2014;21(2):137–51.PubMedCrossRef Rayegani S, Raeissadat S, Sedighipour L, Mohammad Rezazadeh I, Bahrami M, Eliaspour D, Khosrawi S. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top Stroke Rehabil. 2014;21(2):137–51.PubMedCrossRef
93.
go back to reference Ding Q, Lin T, Wu M, Yang W, Li W, Jing Y, Ren X, Gong Y, Xu G, Lan Y. Influence of itbs on the acute neuroplastic change after bci training. Front Cell Neurosci. 2021;15:67.CrossRef Ding Q, Lin T, Wu M, Yang W, Li W, Jing Y, Ren X, Gong Y, Xu G, Lan Y. Influence of itbs on the acute neuroplastic change after bci training. Front Cell Neurosci. 2021;15:67.CrossRef
96.
go back to reference Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage. 2011;54(2):1289–96.PubMedCrossRef Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage. 2011;54(2):1289–96.PubMedCrossRef
97.
go back to reference Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012;590(7):1669–82.PubMedPubMedCentralCrossRef Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012;590(7):1669–82.PubMedPubMedCentralCrossRef
98.
go back to reference Grosse-Wentrup M, Mattia D, Oweiss K. Using brain–computer interfaces to induce neural plasticity and restore function. J Neural Eng. 2011;8(2):025004.PubMedPubMedCentralCrossRef Grosse-Wentrup M, Mattia D, Oweiss K. Using brain–computer interfaces to induce neural plasticity and restore function. J Neural Eng. 2011;8(2):025004.PubMedPubMedCentralCrossRef
99.
go back to reference Raza H, Chowdhury A, Bhattacharyya S. Deep learning based prediction of eeg motor imagery of stroke patients’ for neuro-rehabilitation application. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE. Raza H, Chowdhury A, Bhattacharyya S. Deep learning based prediction of eeg motor imagery of stroke patients’ for neuro-rehabilitation application. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE.
Metadata
Title
Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review
Authors
Ahad Behboodi
Walker A. Lee
Victoria S. Hinchberger
Diane L. Damiano
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2022
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-022-01081-9

Other articles of this Issue 1/2022

Journal of NeuroEngineering and Rehabilitation 1/2022 Go to the issue