Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2022

Open Access 01-12-2022 | Research

Motorless cadence control of standard and low duty cycle-patterned neural stimulation intensity extends muscle-driven cycling output after paralysis

Authors: Kristen Gelenitis, Kevin Foglyano, Lisa Lombardo, John McDaniel, Ronald Triolo

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2022

Login to get access

Abstract

Background

Stimulation-driven exercise is often limited by rapid fatigue of the activated muscles. Selective neural stimulation patterns that decrease activated fiber overlap and/or duty cycle improve cycling exercise duration and intensity. However, unequal outputs from independently activated fiber populations may cause large discrepancies in power production and crank angle velocity among pedal revolutions. Enforcing a constant cadence through feedback control of stimulus levels may address this issue and further improve endurance by targeting a submaximal but higher than steady-state exercise intensity.

Methods

Seven participants with paralysis cycled using standard cadence-controlled stimulation (S-Cont). Four of those participants also cycled with a low duty cycle (carousel) cadence-controlled stimulation scheme (C-Cont). S-Cont and C-Cont patterns were compared with conventional maximal stimulation (S-Max). Outcome measures include total work (W), end power (Pend), power fluctuation (PFI), charge accumulation (Q) and efficiency (η). Physiological measurements of muscle oxygenation (SmO2) and heart rate were also collected with select participants.

Results

At least one cadence-controlled stimulation pattern (S-Cont or C-Cont) improved Pend over S-Max in all participants and increased W in three participants. Both controlled patterns increased Q and η and reduced PFI compared with S-Max and prior open-loop studies. S-Cont stimulation also delayed declines in SmO2 and increased heart rate in one participant compared with S-Max.

Conclusions

Cadence-controlled selective stimulation improves cycling endurance and increases efficiency over conventional stimulation by incorporating fiber groups only as needed to maintain a desired exercise intensity. Closed-loop carousel stimulation also successfully reduces power fluctuations relative to previous open-loop efforts, which will enable neuroprosthesis recipients to better take advantage of duty cycle reducing patterns.
Literature
1.
go back to reference Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6:24–33.CrossRef Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6:24–33.CrossRef
2.
go back to reference Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012;50:803–11.CrossRef Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S. Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. 2012;50:803–11.CrossRef
3.
go back to reference Baldi JC, Jackson RD, Moraille R, Mysiw WJ. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord. 1998;36:463–9.CrossRef Baldi JC, Jackson RD, Moraille R, Mysiw WJ. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord. 1998;36:463–9.CrossRef
4.
go back to reference Dolbow DR, Gorgey AS, Ketchum JM, Gater DR. Home-based functional electrical stimulation cycling enhances quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2013;19:324–9.CrossRef Dolbow DR, Gorgey AS, Ketchum JM, Gater DR. Home-based functional electrical stimulation cycling enhances quality of life in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2013;19:324–9.CrossRef
5.
go back to reference Dolbow DR, Gorgey AS, Gater DR, Moore JR. Body composition changes after 12 months of FES cycling: case report of a 60-year-old female with paraplegia. Spinal Cord. 2014;52:S3–4.CrossRef Dolbow DR, Gorgey AS, Gater DR, Moore JR. Body composition changes after 12 months of FES cycling: case report of a 60-year-old female with paraplegia. Spinal Cord. 2014;52:S3–4.CrossRef
6.
go back to reference van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil BioMed Central. 2021;18:1–16.CrossRef van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil BioMed Central. 2021;18:1–16.CrossRef
7.
go back to reference Hasnan N, Ektas N, Tanhoffer AIP, Tanhoffer R, Fornusek C, Middleton J, et al. Exercise responses during FES cycling in individuals with spinal cord injury. Med Sci Sport Exerc. 2012;45:1131.CrossRef Hasnan N, Ektas N, Tanhoffer AIP, Tanhoffer R, Fornusek C, Middleton J, et al. Exercise responses during FES cycling in individuals with spinal cord injury. Med Sci Sport Exerc. 2012;45:1131.CrossRef
8.
go back to reference BeDell KK, Scremin AME, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil. 1996;75:29–34.CrossRef BeDell KK, Scremin AME, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil. 1996;75:29–34.CrossRef
9.
go back to reference Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord. 2007;45:78–85.CrossRef Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord. 2007;45:78–85.CrossRef
10.
go back to reference Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest. 2003;33:412–9.CrossRef Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest. 2003;33:412–9.CrossRef
11.
go back to reference Decker MJ, Griffin L, Abraham LD, Brandt L. Alternating stimulation of synergistic muscles during functional electrical stimulation cycling improves endurance in persons with spinal cord injury. J Electromyogr Kinesiol. 2010;20:1163–9.CrossRef Decker MJ, Griffin L, Abraham LD, Brandt L. Alternating stimulation of synergistic muscles during functional electrical stimulation cycling improves endurance in persons with spinal cord injury. J Electromyogr Kinesiol. 2010;20:1163–9.CrossRef
12.
go back to reference Laubacher M. Multi-electrode stimulation for performance optimisation of functional electrical stimulation in paraplegic cycling. ETH Zurich. 2018. Laubacher M. Multi-electrode stimulation for performance optimisation of functional electrical stimulation in paraplegic cycling. ETH Zurich. 2018.
13.
go back to reference Gelenitis K, Foglyano K, Lombardo L, Triolo R. Selective neural stimulation methods improve cycling exercise performance after spinal cord injury: a case series. J Neuroeng Rehabil. 2021;18:1–14.CrossRef Gelenitis K, Foglyano K, Lombardo L, Triolo R. Selective neural stimulation methods improve cycling exercise performance after spinal cord injury: a case series. J Neuroeng Rehabil. 2021;18:1–14.CrossRef
14.
go back to reference Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, et al. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil. 2019;16:5.CrossRef Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, et al. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil. 2019;16:5.CrossRef
15.
go back to reference Downey RJ, Bellman MJ, Kawai H, Gregory CM, Dixon WE. Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations. IEEE Trans Neural Syst Rehabil Eng. 2014;23:964–72.CrossRef Downey RJ, Bellman MJ, Kawai H, Gregory CM, Dixon WE. Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations. IEEE Trans Neural Syst Rehabil Eng. 2014;23:964–72.CrossRef
16.
go back to reference Popović LZ, Malešević NM. Muscle fatigue of quadriceps in paraplegics: comparison between single vs. multi-pad electrode surface stimulation. In: Proc 31st Annu Int Conf IEEE Eng Med Biol Soc Eng Futur Biomed EMBC 2009. IEEE Computer Society; 2009: 6785–8. Popović LZ, Malešević NM. Muscle fatigue of quadriceps in paraplegics: comparison between single vs. multi-pad electrode surface stimulation. In: Proc 31st Annu Int Conf IEEE Eng Med Biol Soc Eng Futur Biomed EMBC 2009. IEEE Computer Society; 2009: 6785–8.
17.
go back to reference Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111:2399–407.CrossRef Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111:2399–407.CrossRef
18.
go back to reference Farhoud A, Erfanian A. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control. IEEE Trans Neural Syst Rehabil Eng. 2014;22:533–42.CrossRef Farhoud A, Erfanian A. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control. IEEE Trans Neural Syst Rehabil Eng. 2014;22:533–42.CrossRef
19.
go back to reference Hunt KJ, Ferrario C, Grant S, Stone B, Mclean AN, Fraser MH, et al. Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost. Med Eng Phys. 2006;28:710–8.CrossRef Hunt KJ, Ferrario C, Grant S, Stone B, Mclean AN, Fraser MH, et al. Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost. Med Eng Phys. 2006;28:710–8.CrossRef
20.
go back to reference Gelenitis K, Freeberg M, Triolo R. Sum of phase-shifted sinusoids stimulation prolongs paralyzed muscle output. J Neuroeng Rehabil J. 2020;17:1–7.CrossRef Gelenitis K, Freeberg M, Triolo R. Sum of phase-shifted sinusoids stimulation prolongs paralyzed muscle output. J Neuroeng Rehabil J. 2020;17:1–7.CrossRef
21.
go back to reference Barlow D, Herson M. Single case experimental designs. 2nd ed. New York NY: Permagon Press; 1984. Barlow D, Herson M. Single case experimental designs. 2nd ed. New York NY: Permagon Press; 1984.
22.
go back to reference Allen H, Coggan A. Training and racing with a power meter. 2nd ed. USA: VeloPress; 2010. Allen H, Coggan A. Training and racing with a power meter. 2nd ed. USA: VeloPress; 2010.
23.
go back to reference Lika R, Alderdice M, Kvale J, Kearney J. Efficacy of cycling training based on a power field test. J Strength Cond Res. 2007;21:265–9.CrossRef Lika R, Alderdice M, Kvale J, Kearney J. Efficacy of cycling training based on a power field test. J Strength Cond Res. 2007;21:265–9.CrossRef
24.
go back to reference Fisher LE. Improving neuroprosthesis-assisted standing with nerve-based stimulating electrodes. Case Western Reserve University; 2012. Fisher LE. Improving neuroprosthesis-assisted standing with nerve-based stimulating electrodes. Case Western Reserve University; 2012.
25.
go back to reference Yoshida K, Horch K. Selective stimulation of peripheral nerve fibers using dual intrafasicular electrodes. IEEE Trans Biomed Eng. 1993;40:492–4.CrossRef Yoshida K, Horch K. Selective stimulation of peripheral nerve fibers using dual intrafasicular electrodes. IEEE Trans Biomed Eng. 1993;40:492–4.CrossRef
26.
go back to reference Fisher LE, Tyler DJ, Triolo RJ. Optimization of selective stimulation parameters for multi-contact electrodes. J Neuroeng Rehabil. 2013;10:25.CrossRef Fisher LE, Tyler DJ, Triolo RJ. Optimization of selective stimulation parameters for multi-contact electrodes. J Neuroeng Rehabil. 2013;10:25.CrossRef
27.
go back to reference Günter C, Delbeke J, Ortiz-Catalan M. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J. Neuroeng. Rehabil. 2019; 1–16. Günter C, Delbeke J, Ortiz-Catalan M. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J. Neuroeng. Rehabil. 2019; 1–16.
28.
go back to reference Maneski LZP, Malešević NM, Savić AM, Keller T, Popović DB. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles. Muscle Nerve. 2013;48:930–7.CrossRef Maneski LZP, Malešević NM, Savić AM, Keller T, Popović DB. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles. Muscle Nerve. 2013;48:930–7.CrossRef
29.
go back to reference Wannawas N, Subramanian M, Faisal AA. Neuromechanics-based deep reinforcement learning of neurostimulation control in FES cycling. 2021. Wannawas N, Subramanian M, Faisal AA. Neuromechanics-based deep reinforcement learning of neurostimulation control in FES cycling. 2021.
30.
go back to reference de Sousa ACC, Ramos FM, Narvaez Dorado MC, da Fonseca LO, Lanari Bó AP. A comparative study on control strategies for FES cycling using a detailed musculoskeletal model. IFAC-PapersOnLine. 2016;49:204–9. de Sousa ACC, Ramos FM, Narvaez Dorado MC, da Fonseca LO, Lanari Bó AP. A comparative study on control strategies for FES cycling using a detailed musculoskeletal model. IFAC-PapersOnLine. 2016;49:204–9.
31.
go back to reference Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–93.CrossRef Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–93.CrossRef
32.
go back to reference Takaishi T, Sugiura T, Katayama K, Sato Y, Shima N, Yamamoto T, et al. Changes in blood volume and oxygenation level in a working muscle during a crank cycle. Med Sci Sports Exerc. 2002;34:520–8.CrossRef Takaishi T, Sugiura T, Katayama K, Sato Y, Shima N, Yamamoto T, et al. Changes in blood volume and oxygenation level in a working muscle during a crank cycle. Med Sci Sports Exerc. 2002;34:520–8.CrossRef
33.
go back to reference Barton TJ, Low DA, Thijssen DHJ. Cardiovascular responses to exercise in spinal cord injury. Physiol Exerc Spinal Cord Inj. 2016; 105–26. Barton TJ, Low DA, Thijssen DHJ. Cardiovascular responses to exercise in spinal cord injury. Physiol Exerc Spinal Cord Inj. 2016; 105–26.
34.
go back to reference Gotshall RW, Bauer TA, Fahrner SL. Cycling cadence alters exercise hemodynamics. Int J Sports Med. 1996;17:17–21.CrossRef Gotshall RW, Bauer TA, Fahrner SL. Cycling cadence alters exercise hemodynamics. Int J Sports Med. 1996;17:17–21.CrossRef
35.
go back to reference Duenas VH, Cousin CA, Ghanbari V, Fox EJ, Dixon WE. Torque and cadence tracking in functional electrical stimulation induced cycling using passivity-based spatial repetitive learning control. Automatica. 2020;115:1–9.CrossRef Duenas VH, Cousin CA, Ghanbari V, Fox EJ, Dixon WE. Torque and cadence tracking in functional electrical stimulation induced cycling using passivity-based spatial repetitive learning control. Automatica. 2020;115:1–9.CrossRef
36.
go back to reference Rouse CA, Downey RJ, Gregory CM, Cousin CA, Duenas VH, Dixon WE. FES cycling in stroke: novel closed-loop algorithm accommodates differences in functional impairments. IEEE Trans Biomed Eng. 2020;67:738–49.CrossRef Rouse CA, Downey RJ, Gregory CM, Cousin CA, Duenas VH, Dixon WE. FES cycling in stroke: novel closed-loop algorithm accommodates differences in functional impairments. IEEE Trans Biomed Eng. 2020;67:738–49.CrossRef
37.
go back to reference Cousin CA, Rouse CA, Duenas VH, Dixon WE. Controlling the cadence and admittance of a functional electrical stimulation cycle. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1181–92.CrossRef Cousin CA, Rouse CA, Duenas VH, Dixon WE. Controlling the cadence and admittance of a functional electrical stimulation cycle. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1181–92.CrossRef
38.
go back to reference Cousin CA, Duenas VH, Rouse CA, Bellman MJ, Freeborn P, Fox EJ, et al. Closed-loop cadence and instantaneous power control on a motorized functional electrical stimulation cycle. IEEE Trans Control Syst Technol. 2019;1–16. Cousin CA, Duenas VH, Rouse CA, Bellman MJ, Freeborn P, Fox EJ, et al. Closed-loop cadence and instantaneous power control on a motorized functional electrical stimulation cycle. IEEE Trans Control Syst Technol. 2019;1–16.
39.
go back to reference Winett RA, Carpinelli RN. Potential health-related benefits of resistance training. Prev Med (Baltim). 2001;33:503–13.CrossRef Winett RA, Carpinelli RN. Potential health-related benefits of resistance training. Prev Med (Baltim). 2001;33:503–13.CrossRef
40.
go back to reference Ryan TE, Brizendine JT, Backus D, Mccully KK. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil. 2013;94:2166–73.CrossRef Ryan TE, Brizendine JT, Backus D, Mccully KK. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil. 2013;94:2166–73.CrossRef
41.
go back to reference Muraki S, Fornusek C, Raymond J, Davis GM. Muscle oxygenation during prolonged electrical stimulation-evoked cycling in paraplegics. Appl Physiol Nutr Metab. 2007;32:463–72.CrossRef Muraki S, Fornusek C, Raymond J, Davis GM. Muscle oxygenation during prolonged electrical stimulation-evoked cycling in paraplegics. Appl Physiol Nutr Metab. 2007;32:463–72.CrossRef
Metadata
Title
Motorless cadence control of standard and low duty cycle-patterned neural stimulation intensity extends muscle-driven cycling output after paralysis
Authors
Kristen Gelenitis
Kevin Foglyano
Lisa Lombardo
John McDaniel
Ronald Triolo
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2022
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-022-01064-w

Other articles of this Issue 1/2022

Journal of NeuroEngineering and Rehabilitation 1/2022 Go to the issue