Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Dissociating motor learning from recovery in exoskeleton training post-stroke

Authors: Nicolas Schweighofer, Chunji Wang, Denis Mottet, Isabelle Laffont, Karima Bakhti, David J. Reinkensmeyer, Olivier Rémy-Néris

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

A large number of robotic or gravity-supporting devices have been developed for rehabilitation of upper extremity post-stroke. Because these devices continuously monitor performance data during training, they could potentially help to develop predictive models of the effects of motor training on recovery. However, during training with such devices, patients must become adept at using the new “tool” of the exoskeleton, including learning the new forces and visuomotor transformations associated with the device. We thus hypothesized that the changes in performance during extensive training with a passive, gravity-supporting, exoskeleton device (the Armeo Spring) will follow an initial fast phase, due to learning to use the device, and a slower phase that corresponds to reduction in overall arm impairment. Of interest was whether these fast and slow processes were related.

Methods

To test the two-process hypothesis, we used mixed-effect exponential models to identify putative fast and slow changes in smoothness of arm movements during 80 arm reaching tests performed during 20 days of exoskeleton training in 53 individuals with post-acute stroke.

Results

In line with our hypothesis, we found that double exponential models better fit the changes in smoothness of arm movements than single exponential models. In contrast, single exponential models better fit the data for a group of young healthy control subjects. In addition, in the stroke group, we showed that smoothness correlated with a measure of impairment (the upper extremity Fugl Meyer score - UEFM) at the end, but not at the beginning, of training. Furthermore, the improvement in movement smoothness due to the slow component, but not to the fast component, strongly correlated with the improvement in the UEFM between the beginning and end of training. There was no correlation between the change of peaks due to the fast process and the changes due to the slow process. Finally, the improvement in smoothness due to the slow, but not the fast, component correlated with the number of days since stroke at the onset of training – i.e. participants who started exoskeleton training sooner after stroke improved their smoothness more.

Conclusions

Our results therefore demonstrate that at least two processes are involved in in performance improvements measured during mechanized training post-stroke. The fast process is consistent with learning to use the exoskeleton, while the slow process independently reflects the reduction in upper extremity impairment.
Footnotes
1
Some participants did not perform all the sessions for reasons such as fatigue (the session was terminated before the 2nd test was given) or omission by the therapists to include the test in the session. In addition, some therapists did not include the test in the first sessions when patients were instructed on the functioning of the ARMEO.
 
Literature
1.
go back to reference Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology. 2000;39(5):835–41.PubMedCrossRef Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology. 2000;39(5):835–41.PubMedCrossRef
2.
go back to reference Bains AS, Schweighofer N. Time-sensitive reorganization of the somatosensory cortex post-stroke depends on interaction between Hebbian plasticity and homeoplasticity: a simulation study. Journal of neurophysiology 2014:jn. 00433:02013. Bains AS, Schweighofer N. Time-sensitive reorganization of the somatosensory cortex post-stroke depends on interaction between Hebbian plasticity and homeoplasticity: a simulation study. Journal of neurophysiology 2014:jn. 00433:02013.
3.
go back to reference Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRef Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRef
4.
go back to reference Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.PubMedCrossRef Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.PubMedCrossRef
5.
go back to reference Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 1993;70(2):733–41.PubMedCrossRef Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 1993;70(2):733–41.PubMedCrossRef
6.
go back to reference Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.PubMedCrossRef Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.PubMedCrossRef
7.
go back to reference Lincoln NB, Willis D, Philips SA, Juby LC, Berman P. Comparison of rehabilitation practice on hospital wards for stroke patients. Stroke. 1996;27(1):18–23.PubMedCrossRef Lincoln NB, Willis D, Philips SA, Juby LC, Berman P. Comparison of rehabilitation practice on hospital wards for stroke patients. Stroke. 1996;27(1):18–23.PubMedCrossRef
8.
go back to reference Jeffers MS, Karthikeyan S, Gomez-Smith M, Gasinzigwa S, Achenbach J, Feiten A, Corbett D. Does stroke rehabilitation really matter? Part B: an algorithm for prescribing an effective intensity of rehabilitation. Neurorehabil Neural Repair. 2018;32(1):73–83.PubMedCrossRef Jeffers MS, Karthikeyan S, Gomez-Smith M, Gasinzigwa S, Achenbach J, Feiten A, Corbett D. Does stroke rehabilitation really matter? Part B: an algorithm for prescribing an effective intensity of rehabilitation. Neurorehabil Neural Repair. 2018;32(1):73–83.PubMedCrossRef
9.
go back to reference Krebs HI, Volpe BT, Ferraro M, Fasoli S, Palazzolo J, Rohrer B, Edelstein L, Hogan N. Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil. 2002;8(4):54–70.PubMedCrossRef Krebs HI, Volpe BT, Ferraro M, Fasoli S, Palazzolo J, Rohrer B, Edelstein L, Hogan N. Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil. 2002;8(4):54–70.PubMedCrossRef
10.
go back to reference Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.PubMedCrossRef Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.PubMedCrossRef
11.
12.
go back to reference Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, Schweighofer N, Froger J: Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med 2014, 57(8):543–551. Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, Schweighofer N, Froger J: Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med 2014, 57(8):543–551.
13.
go back to reference Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008;(4):CD006876. Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008;(4):CD006876.
14.
go back to reference Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, Hogan N. Submovements grow larger, fewer, and more blended during stroke recovery. Mot Control. 2004;8(4):472–83.CrossRef Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, Hogan N. Submovements grow larger, fewer, and more blended during stroke recovery. Mot Control. 2004;8(4):472–83.CrossRef
15.
go back to reference Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–304.PubMedCrossRef Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–304.PubMedCrossRef
16.
go back to reference Park H, Kim S, Winstein CJ, Gordon J, Schweighofer N. Short-duration and intensive training improves long-term reaching performance in individuals with chronic stroke. Neurorehabil Neural Repair. 2016;30(6):551–61.PubMedCrossRef Park H, Kim S, Winstein CJ, Gordon J, Schweighofer N. Short-duration and intensive training improves long-term reaching performance in individuals with chronic stroke. Neurorehabil Neural Repair. 2016;30(6):551–61.PubMedCrossRef
17.
go back to reference Gottlieb GL, Corcos DM, Jaric S, Agarwal GC. Practice improves even the simplest movements. Exp Brain Res. 1988;73(2):436–40.PubMedCrossRef Gottlieb GL, Corcos DM, Jaric S, Agarwal GC. Practice improves even the simplest movements. Exp Brain Res. 1988;73(2):436–40.PubMedCrossRef
18.
go back to reference Schmidt RA, Lee T, Winstein C, Wulf G, Zelaznik H: Motor control and learning, 6E. Human kinetics.; 2018. Schmidt RA, Lee T, Winstein C, Wulf G, Zelaznik H: Motor control and learning, 6E. Human kinetics.; 2018.
19.
go back to reference Park H, Schweighofer N. Nonlinear mixed-effects model reveals a distinction between learning and performance in intensive reach training post-stroke. J Neuroeng Rehabil. 2017;14(1):21.PubMedPubMedCentralCrossRef Park H, Schweighofer N. Nonlinear mixed-effects model reveals a distinction between learning and performance in intensive reach training post-stroke. J Neuroeng Rehabil. 2017;14(1):21.PubMedPubMedCentralCrossRef
20.
go back to reference Schaefer SY, Duff K. Rapid responsiveness to practice predicts longer-term retention of upper extremity motor skill in non-demented older adults. Front Aging Neurosci. 2015;7:214.PubMedPubMedCentralCrossRef Schaefer SY, Duff K. Rapid responsiveness to practice predicts longer-term retention of upper extremity motor skill in non-demented older adults. Front Aging Neurosci. 2015;7:214.PubMedPubMedCentralCrossRef
21.
go back to reference Cramer SC. Repairing the human brain after stroke: I. mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272–87.PubMedCrossRef Cramer SC. Repairing the human brain after stroke: I. mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272–87.PubMedCrossRef
22.
go back to reference Cramer SC. Repairing the human brain after stroke. II Restorative therapies. Ann Neurol. 2008;63(5):549–60.PubMedCrossRef Cramer SC. Repairing the human brain after stroke. II Restorative therapies. Ann Neurol. 2008;63(5):549–60.PubMedCrossRef
23.
go back to reference Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.PubMedCrossRef Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.PubMedCrossRef
24.
go back to reference Butterworth S: On the theory of filter amplifiers. 1930. Butterworth S: On the theory of filter amplifiers. 1930.
25.
go back to reference Lindstrom MJ, Bates DM. Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics. 1990;46(3):673–87. Lindstrom MJ, Bates DM. Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics. 1990;46(3):673–87.
27.
go back to reference Hardwick RM, Rajan VA, Bastian AJ, Krakauer JW, Celnik PA. Motor learning in stroke: trained patients are not equal to untrained patients with less impairment. Neurorehabil Neural Repair. 2017;31(2):178–89.PubMedCrossRef Hardwick RM, Rajan VA, Bastian AJ, Krakauer JW, Celnik PA. Motor learning in stroke: trained patients are not equal to untrained patients with less impairment. Neurorehabil Neural Repair. 2017;31(2):178–89.PubMedCrossRef
28.
go back to reference Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci U S A. 1999;96(8):4645–9.PubMedPubMedCentralCrossRef Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci U S A. 1999;96(8):4645–9.PubMedPubMedCentralCrossRef
29.
go back to reference Schaal S. Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. Tokyo: Adaptive motion of animals and machines; 2006. p. 261–80. Schaal S. Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. Tokyo: Adaptive motion of animals and machines; 2006. p. 261–80.
30.
go back to reference Huang R, Cheng H, Guo H, Lin X, Zhang J. Hierarchical learning control with physical human-exoskeleton interaction. Inf Sci. 2018;432:584–95.CrossRef Huang R, Cheng H, Guo H, Lin X, Zhang J. Hierarchical learning control with physical human-exoskeleton interaction. Inf Sci. 2018;432:584–95.CrossRef
31.
go back to reference Schaal S, Schweighofer N. Computational motor control in humans and robots. Curr Opin Neurobiol. 2005;15(6):675–82.PubMedCrossRef Schaal S, Schweighofer N. Computational motor control in humans and robots. Curr Opin Neurobiol. 2005;15(6):675–82.PubMedCrossRef
32.
go back to reference Horn SD, DeJong G, Smout RJ, Gassaway J, James R, Conroy B. Stroke rehabilitation patients, practice, and outcomes: is earlier and more aggressive therapy better? Arch Phys Med Rehabil. 2005;86(12 Suppl 2):S101–14.PubMedCrossRef Horn SD, DeJong G, Smout RJ, Gassaway J, James R, Conroy B. Stroke rehabilitation patients, practice, and outcomes: is earlier and more aggressive therapy better? Arch Phys Med Rehabil. 2005;86(12 Suppl 2):S101–14.PubMedCrossRef
33.
go back to reference Wolf SL, Thompson PA, Winstein CJ, Miller JP, Blanton SR, Nichols-Larsen DS, Morris DM, Uswatte G, Taub E, Light KE, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. 2010;41(10):2309–15.PubMedPubMedCentralCrossRef Wolf SL, Thompson PA, Winstein CJ, Miller JP, Blanton SR, Nichols-Larsen DS, Morris DM, Uswatte G, Taub E, Light KE, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. 2010;41(10):2309–15.PubMedPubMedCentralCrossRef
34.
go back to reference Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, Powers WJ, Wolf SL, Edwards DF. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73(3):195–201.PubMedPubMedCentralCrossRef Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, Powers WJ, Wolf SL, Edwards DF. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73(3):195–201.PubMedPubMedCentralCrossRef
35.
go back to reference Schweighofer N, Spoelstra J, Arbib MA, Kawato M. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci. 1998;10(1):95–105.PubMedCrossRef Schweighofer N, Spoelstra J, Arbib MA, Kawato M. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci. 1998;10(1):95–105.PubMedCrossRef
36.
go back to reference Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–9.PubMedCrossRef Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–9.PubMedCrossRef
37.
go back to reference Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.PubMedCrossRef Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.PubMedCrossRef
38.
go back to reference Kim S, Ogawa K, Lv J, Schweighofer N, Imamizu H. Neural substrates related to motor memory with multiple timescales in sensorimotor adaptation. PLoS Biol. 2015;13(12):e1002312.PubMedPubMedCentralCrossRef Kim S, Ogawa K, Lv J, Schweighofer N, Imamizu H. Neural substrates related to motor memory with multiple timescales in sensorimotor adaptation. PLoS Biol. 2015;13(12):e1002312.PubMedPubMedCentralCrossRef
39.
go back to reference Brooks VB, Cooke JD, Thomas JS. The continuity of movements. In: Stein RB, Pearson KG, Smith RS, Redford JB, editors. Control of posture and locomotion. Boston, MA: Springer US; 1973. p. 257–72.CrossRef Brooks VB, Cooke JD, Thomas JS. The continuity of movements. In: Stein RB, Pearson KG, Smith RS, Redford JB, editors. Control of posture and locomotion. Boston, MA: Springer US; 1973. p. 257–72.CrossRef
40.
go back to reference Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24(1):62–9.PubMedCrossRef Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24(1):62–9.PubMedCrossRef
41.
go back to reference van Dokkum L, Hauret I, Mottet D, Froger J, Metrot J, Laffont I: The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair 2014, 28(1):4–12. van Dokkum L, Hauret I, Mottet D, Froger J, Metrot J, Laffont I: The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair 2014, 28(1):4–12.
42.
go back to reference Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng. 2012;59(8):2126–36.PubMedCrossRef Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng. 2012;59(8):2126–36.PubMedCrossRef
43.
go back to reference Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012;8(2):e1002343.PubMedPubMedCentralCrossRef Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012;8(2):e1002343.PubMedPubMedCentralCrossRef
44.
go back to reference Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil. 2016;13(1):42.PubMedPubMedCentralCrossRef Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil. 2016;13(1):42.PubMedPubMedCentralCrossRef
45.
go back to reference Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, et al. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4.PubMedCrossRef Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, et al. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4.PubMedCrossRef
46.
go back to reference Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.PubMedCrossRef
Metadata
Title
Dissociating motor learning from recovery in exoskeleton training post-stroke
Authors
Nicolas Schweighofer
Chunji Wang
Denis Mottet
Isabelle Laffont
Karima Bakhti
David J. Reinkensmeyer
Olivier Rémy-Néris
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0428-1

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue