Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Research

Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial

Authors: Joon-Ho Shin, Mi-Young Kim, Ji-Yeong Lee, Yu-Jin Jeon, Suyoung Kim, Soobin Lee, Beomjoo Seo, Younggeun Choi

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Virtual reality (VR)-based rehabilitation has been reported to have beneficial effects on upper extremity function in stroke survivors; however, there is limited information about its effects on distal upper extremity function and health-related quality of life (HRQoL). The purpose of the present study was to examine the effects of VR-based rehabilitation combined with standard occupational therapy on distal upper extremity function and HRQoL, and compare the findings to those of amount-matched conventional rehabilitation in stroke survivors.

Methods

The present study was a single-blinded, randomized controlled trial. The study included 46 stroke survivors who were randomized to a Smart Glove (SG) group or a conventional intervention (CON) group. In both groups, the interventions were targeted to the distal upper extremity and standard occupational therapy was administered. The primary outcome was the change in the Fugl–Meyer assessment (FM) scores, and the secondary outcomes were the changes in the Jebsen–Taylor hand function test (JTT), Purdue pegboard test, and Stroke Impact Scale (SIS) version 3.0 scores. The outcomes were assessed before the intervention, in the middle of the intervention, immediately after the intervention, and 1 month after the intervention.

Results

The improvements in the FM (FM-total, FM-prox, and FM-dist), JTT (JTT-total and JTT-gross), and SIS (composite and overall SIS, SIS-social participation, and SIS-mobility) scores were significantly greater in the SG group than in the CON group.

Conclusions

VR-based rehabilitation combined with standard occupational therapy might be more effective than amount-matched conventional rehabilitation for improving distal upper extremity function and HRQoL.

Trial registration

This study is registered under the title “Effects of Novel Game Rehabilitation System on Upper Extremity Function of Patients With Stroke” and can be located in https://clinicaltrials.gov with the study identifier NCT02029651.
Literature
1.
go back to reference Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.CrossRefPubMed Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.CrossRefPubMed
2.
go back to reference Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21(8):357–64.CrossRefPubMed Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21(8):357–64.CrossRefPubMed
3.
go back to reference Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.
4.
go back to reference Fredericks CM, Saladin LK, Fredericks C. Pathophysiology of the motor systems: principles and clinical presentations. Philadelphia: FA Davis; 1996. Fredericks CM, Saladin LK, Fredericks C. Pathophysiology of the motor systems: principles and clinical presentations. Philadelphia: FA Davis; 1996.
5.
go back to reference French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, et al. Repetitive Task Training for Improving Functional Ability After Stroke. Stroke. 2009;40(4):e98–9. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, et al. Repetitive Task Training for Improving Functional Ability After Stroke. Stroke. 2009;40(4):e98–9.
6.
go back to reference Liepert J, Bauder H, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.CrossRefPubMed Liepert J, Bauder H, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.CrossRefPubMed
7.
go back to reference Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science. 1996;272(5269):1791–4.CrossRefPubMed Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science. 1996;272(5269):1791–4.CrossRefPubMed
9.
go back to reference Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015:CD008349. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015:CD008349.
10.
go back to reference Merians AS, Fluet GG, Qiu Q, Saleh S, Lafond I, Davidow A, et al. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J Neuroeng Rehabil. 2011;8(27):0003–8. Merians AS, Fluet GG, Qiu Q, Saleh S, Lafond I, Davidow A, et al. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J Neuroeng Rehabil. 2011;8(27):0003–8.
11.
go back to reference Tsoupikova D, Stoykov NS, Corrigan M, Thielbar K, Vick R, Li Y, et al. Virtual immersion for post-stroke hand rehabilitation therapy. Ann Biomed Eng. 2015;43(2):467–77. Tsoupikova D, Stoykov NS, Corrigan M, Thielbar K, Vick R, Li Y, et al. Virtual immersion for post-stroke hand rehabilitation therapy. Ann Biomed Eng. 2015;43(2):467–77.
12.
go back to reference da Silva CM, Bermudez IBS, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98. da Silva CM, Bermudez IBS, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98.
13.
go back to reference Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, et al. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11(1):171. Thielbar KO, Lord TJ, Fischer HC, Lazzaro EC, Barth KC, Stoykov ME, et al. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11(1):171.
14.
go back to reference Van Allen MW. Aids to the examination of the peripheral nervous system. Arch Neurol. 1977;34(1):61–1. Van Allen MW. Aids to the examination of the peripheral nervous system. Arch Neurol. 1977;34(1):61–1.
15.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMed
16.
go back to reference Gagliese L, Weizblit N, Ellis W, Chan VW. The measurement of postoperative pain: a comparison of intensity scales in younger and older surgical patients. Pain. 2005;117(3):412–20.CrossRefPubMed Gagliese L, Weizblit N, Ellis W, Chan VW. The measurement of postoperative pain: a comparison of intensity scales in younger and older surgical patients. Pain. 2005;117(3):412–20.CrossRefPubMed
17.
go back to reference Choi Y, Gordon J, Park H, Schweighofer N. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke. J Neuroeng Rehabil. 2011;8(42):0003–8. Choi Y, Gordon J, Park H, Schweighofer N. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke. J Neuroeng Rehabil. 2011;8(42):0003–8.
18.
go back to reference Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1974;7(1):13–31. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1974;7(1):13–31.
19.
go back to reference Kim JH, Kim IS, Han TR. New scoring system for jebsen hand function test. J Korean Acad Rehabil Med. 2007;31(6):623–9. Kim JH, Kim IS, Han TR. New scoring system for jebsen hand function test. J Korean Acad Rehabil Med. 2007;31(6):623–9.
20.
go back to reference Duncan PW, Bode RK, Lai SM, Perera S, Investigators GAiNA. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003;84(7):950–63.CrossRefPubMed Duncan PW, Bode RK, Lai SM, Perera S, Investigators GAiNA. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003;84(7):950–63.CrossRefPubMed
21.
go back to reference Moriello C, Byrne K, Cieza A, Nash C, Stolee P, Mayo N. Mapping the stroke impact scale (SIS-16) to the International Classification of Functioning, Disability and Health. J Rehabil Med. 2008;40(2):102–6.CrossRefPubMed Moriello C, Byrne K, Cieza A, Nash C, Stolee P, Mayo N. Mapping the stroke impact scale (SIS-16) to the International Classification of Functioning, Disability and Health. J Rehabil Med. 2008;40(2):102–6.CrossRefPubMed
22.
go back to reference Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41(12):1016–20.CrossRefPubMed Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009;41(12):1016–20.CrossRefPubMed
23.
go back to reference Lin K-c, Fu T, Wu C-y, Wang Y-h, Liu J-s, Hsieh C-j, et al. Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24(5):486–92. Lin K-c, Fu T, Wu C-y, Wang Y-h, Liu J-s, Hsieh C-j, et al. Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24(5):486–92.
24.
go back to reference French B, Leathley M, Sutton C, McAdam J, Thomas L. A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness. Health Technol Assess. 2008;12(30):140.CrossRef French B, Leathley M, Sutton C, McAdam J, Thomas L. A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness. Health Technol Assess. 2008;12(30):140.CrossRef
25.
go back to reference Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task‐specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4):175–89.CrossRefPubMed Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task‐specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4):175–89.CrossRefPubMed
26.
go back to reference Schaefer SY, Patterson CB, Lang CE. Transfer of Training Between Distinct Motor Tasks After Stroke Implications for Task-Specific Approaches to Upper-Extremity Neurorehabilitation. Neurorehabil Neural Repair. 2013;27(7):602–12. Schaefer SY, Patterson CB, Lang CE. Transfer of Training Between Distinct Motor Tasks After Stroke Implications for Task-Specific Approaches to Upper-Extremity Neurorehabilitation. Neurorehabil Neural Repair. 2013;27(7):602–12.
27.
go back to reference Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.CrossRefPubMed Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.CrossRefPubMed
28.
go back to reference Lin KC, Chang YF, Wu CY, Chen YA. Effects of Constraint-Induced Therapy Versus Bilateral Arm Training on Motor Performance, Daily Functions, and Quality of Life in Stroke Survivors. Neurorehabil Neural Repair. 2009;23(5):441-8. Lin KC, Chang YF, Wu CY, Chen YA. Effects of Constraint-Induced Therapy Versus Bilateral Arm Training on Motor Performance, Daily Functions, and Quality of Life in Stroke Survivors. Neurorehabil Neural Repair. 2009;23(5):441-8.
29.
go back to reference Wu C-y, Chen C-l, Tsai W-c, Lin K-c, Chou S-h. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Arch Phys Med Rehabil. 2007;88(3):273–8.CrossRefPubMed Wu C-y, Chen C-l, Tsai W-c, Lin K-c, Chou S-h. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Arch Phys Med Rehabil. 2007;88(3):273–8.CrossRefPubMed
30.
go back to reference Pulman J, Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. Top Stroke Rehabil. 2013;20(2):171–88.CrossRefPubMed Pulman J, Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. Top Stroke Rehabil. 2013;20(2):171–88.CrossRefPubMed
31.
go back to reference Shin JH, Park SB, Jang SH. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Comput Biol Med. 2015;63:92-8. Shin JH, Park SB, Jang SH. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Comput Biol Med. 2015;63:92-8.
32.
go back to reference Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.CrossRefPubMed Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.CrossRefPubMed
33.
go back to reference Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;10:85. Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;10:85.
Metadata
Title
Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial
Authors
Joon-Ho Shin
Mi-Young Kim
Ji-Yeong Lee
Yu-Jin Jeon
Suyoung Kim
Soobin Lee
Beomjoo Seo
Younggeun Choi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0125-x

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue