Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients

Authors: Eri Otaka, Yohei Otaka, Shoko Kasuga, Atsuko Nishimoto, Kotaro Yamazaki, Michiyuki Kawakami, Junichi Ushiba, Meigen Liu

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Various robotic technologies have been developed recently for objective and quantitative assessment of movement. Among them, robotic measures derived from a reaching task in the KINARM Exoskeleton device are characterized by their potential to reveal underlying motor control in reaching movements. The aim of this study was to examine the clinical usefulness and validity of these robot-derived measures in hemiparetic stroke patients.

Methods

Fifty-six participants with a hemiparetic arm due to chronic stroke were enrolled. The robotic assessment was performed using the Visually Guided Reaching (VGR) task in the KINARM Exoskeleton, which allows free arm movements in the horizontal plane. Twelve parameters were derived based on motor control theory. The following clinical assessments were also administered: the proximal upper limb section in the Fugl-Meyer Assessment (FMA-UE(A)), the proximal upper limb part in the Stroke Impairment Assessment Set (SIAS-KM), the Modified Ashworth Scale for the affected elbow flexor muscles (MAS elbow), and seven proximal upper limb tasks in the Wolf Motor Function Test (WMFT). To explore which robotic measures represent deficits of motor control in the affected arm, the VGR parameters in the paretic arm were compared with those in the non-paretic arm using the Wilcoxon signed rank test. Then, to explore which VGR parameters were related to overall motor control regardless of the paresis, correlations between the paretic and non-paretic arms were examined. Finally, to investigate the relationships between the robotic measures and the clinical scales, correlations between the VGR parameters and clinical scales were investigated. Spearman’s rank correlation coefficients were used for all correlational analyses.

Results

Eleven VGR parameters on the paretic side were significantly different from those on the non-paretic side with large effect sizes (|effect size| = 0.76–0.87). Ten VGR parameters correlated significantly with FMA-UE(A) (|r| = 0.32–0.60). Eight VGR parameters also showed significant correlations with SIAS-KM (|r| = 0.42–0.49), MAS elbow (|r| = 0.44–0.48), and the Functional Ability Scale of the WMFT (|r| = 0.52–0.64).

Conclusions

The robot-derived measures could successfully differentiate between the paretic arm and the non-paretic arm and were valid in comparison to the well-established clinical scales.
Literature
1.
go back to reference McCrea PH, Eng JJ, Hodgson AJ. Biomechanics of reaching: Clinical implications for individuals with acquired brain injury. Disabil Rehabil. 2002;24:534–41.PubMedCentralPubMedCrossRef McCrea PH, Eng JJ, Hodgson AJ. Biomechanics of reaching: Clinical implications for individuals with acquired brain injury. Disabil Rehabil. 2002;24:534–41.PubMedCentralPubMedCrossRef
2.
go back to reference Brunnstrom S. Recovery stages and evaluation procedures. In: Movement therapy in hemiplegia: A neurological approach. New York: Harper & Row; 1970. p. 34–55. Brunnstrom S. Recovery stages and evaluation procedures. In: Movement therapy in hemiplegia: A neurological approach. New York: Harper & Row; 1970. p. 34–55.
3.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method of evaluation of physical performance. Scand J Rehab Med. 1975;7:13–31. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method of evaluation of physical performance. Scand J Rehab Med. 1975;7:13–31.
4.
go back to reference Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke. 1993;24:58–63. Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke. 1993;24:58–63.
5.
go back to reference Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4:483–92.PubMedCrossRef Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4:483–92.PubMedCrossRef
6.
go back to reference Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–91.PubMedCrossRef Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–91.PubMedCrossRef
7.
go back to reference Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as outcome measure for research in patients after stroke. Stroke. 2001;32:1635–9.PubMedCrossRef Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as outcome measure for research in patients after stroke. Stroke. 2001;32:1635–9.PubMedCrossRef
8.
go back to reference Scott SH, Dukelow SP. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J Rehabil Res Dev. 2011;48:335–53.PubMedCrossRef Scott SH, Dukelow SP. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J Rehabil Res Dev. 2011;48:335–53.PubMedCrossRef
9.
go back to reference Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic assessment of upper limb motor function after stroke. Am J Phys Med Rehabil. 2012;91:S255–69.PubMedCrossRef Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic assessment of upper limb motor function after stroke. Am J Phys Med Rehabil. 2012;91:S255–69.PubMedCrossRef
10.
go back to reference Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, et al. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng. 2007;15:336–46. Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, et al. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng. 2007;15:336–46.
11.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13:311–24. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13:311–24.
12.
go back to reference Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, et al. Changing motor synergies in chronic stroke. J Neurophysiol. 2007;98:757–68. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, et al. Changing motor synergies in chronic stroke. J Neurophysiol. 2007;98:757–68.
13.
go back to reference Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54:443–6.PubMedCrossRef Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54:443–6.PubMedCrossRef
14.
go back to reference Coderre A, Zeid AA, Dukelow SP, Demmer MJ, Moore KD, Bretzke H, et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil Neural Repair. 2010;24:528–41. Coderre A, Zeid AA, Dukelow SP, Demmer MJ, Moore KD, Bretzke H, et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil Neural Repair. 2010;24:528–41.
15.
go back to reference Scott SH. Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods. 1999;89:119–27.PubMedCrossRef Scott SH. Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods. 1999;89:119–27.PubMedCrossRef
16.
go back to reference Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. 2012;9:72.PubMedCentralPubMedCrossRef Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. 2012;9:72.PubMedCentralPubMedCrossRef
17.
go back to reference Tiffen J, Asher EJ. The Purdue pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32:234–47.CrossRef Tiffen J, Asher EJ. The Purdue pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32:234–47.CrossRef
18.
go back to reference Sonoda S, Chino N, Domen K, Saitoh E. Changes in impairment and disability from the third to the sixth month after stroke and its relationship evaluated by an artificial neural network. Am J Phys Med Rehabil. 1997;76:395–400.PubMedCrossRef Sonoda S, Chino N, Domen K, Saitoh E. Changes in impairment and disability from the third to the sixth month after stroke and its relationship evaluated by an artificial neural network. Am J Phys Med Rehabil. 1997;76:395–400.PubMedCrossRef
19.
go back to reference Fujiwara T, Kasashima Y, Honaga K, Muraoka Y, Tsuji T, Osu R, et al. Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabil Neural Repair. 2009;23:125–32. Fujiwara T, Kasashima Y, Honaga K, Muraoka Y, Tsuji T, Osu R, et al. Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabil Neural Repair. 2009;23:125–32.
20.
go back to reference Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63:1606–10.PubMed Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63:1606–10.PubMed
21.
go back to reference Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73:447–54.PubMed Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73:447–54.PubMed
22.
go back to reference De Weerdt WJG, Harrison MA. Measuring recovery of arm-hand function in stroke patients: a comparison of the Brunnstrom-Fugl-Meyer test and action research Arm test. Physiother Can. 1985;37:65–70.CrossRef De Weerdt WJG, Harrison MA. Measuring recovery of arm-hand function in stroke patients: a comparison of the Brunnstrom-Fugl-Meyer test and action research Arm test. Physiother Can. 1985;37:65–70.CrossRef
23.
go back to reference Chino N, Sonoda S, Domen K, Saitoh E, Kimura A. Stroke Impairment Assessment Set (SIAS). In: Chino N, Melvin JL, editors. Functional evaluation of stroke patients. Tokyo: Springer-Verlag Tokyo; 1996. p. 19–31.CrossRef Chino N, Sonoda S, Domen K, Saitoh E, Kimura A. Stroke Impairment Assessment Set (SIAS). In: Chino N, Melvin JL, editors. Functional evaluation of stroke patients. Tokyo: Springer-Verlag Tokyo; 1996. p. 19–31.CrossRef
24.
go back to reference Domen K, Sonoda S, Chino N, Saitoh E, Kimura A. Evaluation of motor function in stroke patients using the Stroke Impairment Assessment Set (SIAS). In: Chino N, Melvin JL, editors. Functional evaluation of stroke patients. Tokyo: Springer-Verlag Tokyo; 1996. p. 33–44.CrossRef Domen K, Sonoda S, Chino N, Saitoh E, Kimura A. Evaluation of motor function in stroke patients using the Stroke Impairment Assessment Set (SIAS). In: Chino N, Melvin JL, editors. Functional evaluation of stroke patients. Tokyo: Springer-Verlag Tokyo; 1996. p. 33–44.CrossRef
25.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a Modified Ashworth Scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed Bohannon RW, Smith MB. Interrater reliability of a Modified Ashworth Scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed
26.
go back to reference Morris DM, Uswatte G, Crago JE, Cook III EW, Taub E. The reliability of the Wolf Motor Function Test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001;82:750–5.PubMedCrossRef Morris DM, Uswatte G, Crago JE, Cook III EW, Taub E. The reliability of the Wolf Motor Function Test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001;82:750–5.PubMedCrossRef
27.
go back to reference Guilford JP. Fundamental statistics in psychology and education. New York: McGraw Hill; 1956. Guilford JP. Fundamental statistics in psychology and education. New York: McGraw Hill; 1956.
28.
go back to reference Zollo L, Rossini L, Bravi M, Magrone G, Sterzi S, Guglielmelli E. Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation. Med Biol Eng Comput. 2011;49:1131–44.PubMedCrossRef Zollo L, Rossini L, Bravi M, Magrone G, Sterzi S, Guglielmelli E. Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation. Med Biol Eng Comput. 2011;49:1131–44.PubMedCrossRef
29.
go back to reference Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24:62–9.PubMedCrossRef Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24:62–9.PubMedCrossRef
30.
go back to reference Lambercy O, Dovat L, Yun H. Robotic assessment of hand function with the HapticKnob. Proc 4th Intern Convention Rehabil Eng Assistive Technol Singapore. 2010;33:1–4. Lambercy O, Dovat L, Yun H. Robotic assessment of hand function with the HapticKnob. Proc 4th Intern Convention Rehabil Eng Assistive Technol Singapore. 2010;33:1–4.
31.
go back to reference Balasubramanian S, Wei RH, Herman R. Robot-measured performance metrics in stroke rehabilitation. In: Complex Medical Engineering, 2009. CME. ICME International Conference on. 2009. p. 1–6. Balasubramanian S, Wei RH, Herman R. Robot-measured performance metrics in stroke rehabilitation. In: Complex Medical Engineering, 2009. CME. ICME International Conference on. 2009. p. 1–6.
32.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22:50–63. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22:50–63.
33.
go back to reference Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci U S A. 1999;96:4645–9.PubMedCentralPubMedCrossRef Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci U S A. 1999;96:4645–9.PubMedCentralPubMedCrossRef
34.
go back to reference Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22:8297–304. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22:8297–304.
Metadata
Title
Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients
Authors
Eri Otaka
Yohei Otaka
Shoko Kasuga
Atsuko Nishimoto
Kotaro Yamazaki
Michiyuki Kawakami
Junichi Ushiba
Meigen Liu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0059-8

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue