Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors

Authors: Hung P Nguyen, Fouaz Ayachi, Catherine Lavigne–Pelletier, Margaux Blamoutier, Fariborz Rahimi, Patrick Boissy, Mandar Jog, Christian Duval

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living.

Method

A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG.

Results

We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners.

Conclusions

The present study lays the foundation for the development of a comprehensive algorithm to detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor performance within the detected tasks.
Literature
1.
go back to reference Wassink-Vossen S, Collard RM, Oude Voshaar RC, Comijs HC, de Vocht HM, Naarding P. Physical (in)activity and depression in older people. J Affect Disord. 2014;161:65–72. doi:10.1016/j.jad.2014.03.001.CrossRefPubMed Wassink-Vossen S, Collard RM, Oude Voshaar RC, Comijs HC, de Vocht HM, Naarding P. Physical (in)activity and depression in older people. J Affect Disord. 2014;161:65–72. doi:10.1016/j.jad.2014.03.001.CrossRefPubMed
2.
go back to reference Hassan A, Vallabhajosula S, Zahodne LB, Bowers D, Okun MS, Fernandez HH, et al. Correlations of apathy and depression with postural instability in Parkinson disease. J Neurol Sci. 2014;338(1–2):162–5. doi:10.1016/j.jns.2013.12.040.CrossRefPubMed Hassan A, Vallabhajosula S, Zahodne LB, Bowers D, Okun MS, Fernandez HH, et al. Correlations of apathy and depression with postural instability in Parkinson disease. J Neurol Sci. 2014;338(1–2):162–5. doi:10.1016/j.jns.2013.12.040.CrossRefPubMed
3.
go back to reference Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72–84.CrossRefPubMed Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72–84.CrossRefPubMed
4.
go back to reference Godfrey A, Bourke AK, Olaighin GM, van de Ven P, Nelson J. Activity classification using a single chest mounted tri-axial accelerometer. Med Eng Phys. 2011;33(9):1127–35. doi:10.1016/j.medengphy.2011.05.002.CrossRefPubMed Godfrey A, Bourke AK, Olaighin GM, van de Ven P, Nelson J. Activity classification using a single chest mounted tri-axial accelerometer. Med Eng Phys. 2011;33(9):1127–35. doi:10.1016/j.medengphy.2011.05.002.CrossRefPubMed
5.
go back to reference Arif M, Bilal M, Kattan A, Ahamed SI. Better Physical Activity Classification using Smartphone Acceleration Sensor. J Med Syst. 2014;38(9):95. doi:10.1007/s10916-014-0095-0.CrossRefPubMed Arif M, Bilal M, Kattan A, Ahamed SI. Better Physical Activity Classification using Smartphone Acceleration Sensor. J Med Syst. 2014;38(9):95. doi:10.1007/s10916-014-0095-0.CrossRefPubMed
6.
go back to reference Culhane KM, Lyons GM, Hilton D, Grace PA, Lyons D. Long-term mobility monitoring of older adults using accelerometers in a clinical environment. Clin Rehabil. 2004;18(3):335–43.CrossRefPubMed Culhane KM, Lyons GM, Hilton D, Grace PA, Lyons D. Long-term mobility monitoring of older adults using accelerometers in a clinical environment. Clin Rehabil. 2004;18(3):335–43.CrossRefPubMed
7.
go back to reference Lyons GM, Culhane KM, Hilton D, Grace PA, Lyons D. A description of an accelerometer-based mobility monitoring technique. Med Eng Phys. 2005;27(6):497–504. doi:10.1016/j.medengphy.2004.11.006.CrossRefPubMed Lyons GM, Culhane KM, Hilton D, Grace PA, Lyons D. A description of an accelerometer-based mobility monitoring technique. Med Eng Phys. 2005;27(6):497–504. doi:10.1016/j.medengphy.2004.11.006.CrossRefPubMed
8.
go back to reference Bourke AK, O’Brien JV, Lyons GM. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture. 2007;26(2):194–9. doi:10.1016/j.gaitpost.2006.09.012.CrossRefPubMed Bourke AK, O’Brien JV, Lyons GM. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture. 2007;26(2):194–9. doi:10.1016/j.gaitpost.2006.09.012.CrossRefPubMed
9.
go back to reference Dijkstra B, Kamsma YP, Zijlstra W. Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson’s disease. Arch Phys Med Rehabil. 2010;91(8):1272–7. doi:10.1016/j.apmr.2010.05.004.CrossRefPubMed Dijkstra B, Kamsma YP, Zijlstra W. Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson’s disease. Arch Phys Med Rehabil. 2010;91(8):1272–7. doi:10.1016/j.apmr.2010.05.004.CrossRefPubMed
10.
go back to reference Rahimi F, Bee C, Duval C, Boissy P, Edwards R, Jog M. Using ecological whole body kinematics to evaluate effects of medication adjustment in Parkinson Disease. J Parkinson Dis. 2014. doi:10.3233/JPD-140370. Rahimi F, Bee C, Duval C, Boissy P, Edwards R, Jog M. Using ecological whole body kinematics to evaluate effects of medication adjustment in Parkinson Disease. J Parkinson Dis. 2014. doi:10.3233/JPD-140370.
11.
go back to reference Rahimi F, Duval C, Jog M, Bee C, South A, Jog M, et al. Capturing whole-body mobility of patients with Parkinson disease using inertial motion sensors: expected challenges and rewards. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5833–8. doi:10.1109/IEMBS.2011.6091443.PubMed Rahimi F, Duval C, Jog M, Bee C, South A, Jog M, et al. Capturing whole-body mobility of patients with Parkinson disease using inertial motion sensors: expected challenges and rewards. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5833–8. doi:10.1109/IEMBS.2011.6091443.PubMed
12.
go back to reference Moncada-Torres A, Leuenberger K, Gonzenbach R, Luft A, Gassert R. Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiol Meas. 2014;35(7):1245–63. doi:10.1088/0967-3334/35/7/1245.CrossRefPubMed Moncada-Torres A, Leuenberger K, Gonzenbach R, Luft A, Gassert R. Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiol Meas. 2014;35(7):1245–63. doi:10.1088/0967-3334/35/7/1245.CrossRefPubMed
13.
go back to reference Najafi B, Aminian K, Loew F, Blanc Y, Robert PA. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Bio-med Eng. 2002;49(8):843–51. doi:10.1109/TBME.2002.800763.CrossRef Najafi B, Aminian K, Loew F, Blanc Y, Robert PA. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Bio-med Eng. 2002;49(8):843–51. doi:10.1109/TBME.2002.800763.CrossRef
14.
go back to reference Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–35. doi:10.1136/jnnp.2006.106914.CrossRefPubMedCentralPubMed Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–35. doi:10.1136/jnnp.2006.106914.CrossRefPubMedCentralPubMed
15.
go back to reference Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil. 1998;79(9):1043–6.CrossRefPubMed Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil. 1998;79(9):1043–6.CrossRefPubMed
16.
go back to reference Janssen W, Bussmann J, Selles R, Koudstaal P, Ribbers G, Stam H. Recovery of the sit-to-stand movement after stroke: a longitudinal cohort study. Neurorehabil Neural Repair. 2010;24(8):763–9. doi:10.1177/1545968310363584.CrossRefPubMed Janssen W, Bussmann J, Selles R, Koudstaal P, Ribbers G, Stam H. Recovery of the sit-to-stand movement after stroke: a longitudinal cohort study. Neurorehabil Neural Repair. 2010;24(8):763–9. doi:10.1177/1545968310363584.CrossRefPubMed
17.
go back to reference Brooks RIS. Multi-sensor fusion: fundamentals and application with software. Upper Saddle River, NJ: Prentice-Hall Inc; 1998. Brooks RIS. Multi-sensor fusion: fundamentals and application with software. Upper Saddle River, NJ: Prentice-Hall Inc; 1998.
18.
go back to reference Roetenberg D, Luinge HJ, Baten CTM, Veltink PH. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):395–405. doi:10.1109/TNSRE.2005.847353.CrossRefPubMed Roetenberg D, Luinge HJ, Baten CTM, Veltink PH. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):395–405. doi:10.1109/TNSRE.2005.847353.CrossRefPubMed
19.
go back to reference Sabatini AM. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng. 2006;53(7):1346–56. doi:10.1109/TBME.2006.875664.CrossRefPubMed Sabatini AM. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng. 2006;53(7):1346–56. doi:10.1109/TBME.2006.875664.CrossRefPubMed
20.
go back to reference Innovations and Advances in Computing, Informatics, System Sciences, Networking and Engineering. Lecture Notes in Electrical Engineering. New York: Springer International Publishing; 2015. Innovations and Advances in Computing, Informatics, System Sciences, Networking and Engineering. Lecture Notes in Electrical Engineering. New York: Springer International Publishing; 2015.
21.
go back to reference Chang E, Zak S. An introduction to optimization. 1st ed. Hoboken, New Jersey: Wiley & Sons; 2013. Chang E, Zak S. An introduction to optimization. 1st ed. Hoboken, New Jersey: Wiley & Sons; 2013.
22.
go back to reference Simon Rogers MG. A first course in machine learning. Machine learning & pattern recognition. Cambridge UK: Chapman & Hall / CRC; 2012. Simon Rogers MG. A first course in machine learning. Machine learning & pattern recognition. Cambridge UK: Chapman & Hall / CRC; 2012.
23.
go back to reference Cheng FY, Yang YR, Wang CJ, Wu YR, Cheng SJ, Wang HC, et al. Factors influencing turning and its relationship with falls in individuals with Parkinson’s disease. PLoS One. 2014;9(4):e93572. doi:10.1371/journal.pone.0093572.CrossRefPubMedCentralPubMed Cheng FY, Yang YR, Wang CJ, Wu YR, Cheng SJ, Wang HC, et al. Factors influencing turning and its relationship with falls in individuals with Parkinson’s disease. PLoS One. 2014;9(4):e93572. doi:10.1371/journal.pone.0093572.CrossRefPubMedCentralPubMed
24.
go back to reference Stack EL, Ashburn AM, Jupp KE. Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord. 2006;12(2):87–92. doi:10.1016/j.parkreldis.2005.08.008.CrossRefPubMed Stack EL, Ashburn AM, Jupp KE. Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord. 2006;12(2):87–92. doi:10.1016/j.parkreldis.2005.08.008.CrossRefPubMed
Metadata
Title
Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors
Authors
Hung P Nguyen
Fouaz Ayachi
Catherine Lavigne–Pelletier
Margaux Blamoutier
Fariborz Rahimi
Patrick Boissy
Mandar Jog
Christian Duval
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0026-4

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue