Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm

Authors: Christopher J Hasson, Julia Manczurowsky

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

After a limb is lost a prosthesis can restore function. For maximum utility, prosthetic limbs should accept movement commands and provide force and motion feedback, which can be conveyed with vibrotactile feedback (VIBF). While prior studies have shown that force-based VIBF benefits control, the merits of motion-based VIBF are unclear. Our goal was to clarify the effectiveness of position- and velocity-based VIBF for prosthetic arm control.

Methods

Healthy adults with normal limb function practiced a goal-directed task with a virtual myoelectric prosthetic arm. A linear resonant actuator on the wrist provided VIBF. Two groups with nine subjects each received amplitude modulated VIBF in addition to visual feedback while practicing the task. In one group, the VIBF was proportional to the virtual arm’s position, and in the other group, velocity. A control group of nine subjects received only visual feedback. Subjects practiced for 240 trials, followed by 180 trials with feedback manipulations for the VIBF groups. Performance was characterized by end-point error, movement time, and a composite skill measure that combined these quantities. A second experiment with a new group of five subjects assessed discrimination capabilities between different position- and velocity-based VIBF profiles.

Results

With practice all groups improved their skill in controlling the virtual prosthetic arm. Subjects who received additional position- and velocity-based VIBF learned at the same rate as the control group, who received only visual feedback (learning rate time constant: about 40 trials). When visual feedback was subsequently removed leaving only VIBF, performance was no better than with no feedback at all. When VIBF was removed leaving only visual feedback, about half of the participants performed better, instead of worse. The VIBF discrimination tests showed that subjects could detect virtual arm angular position and velocity differences of about 5 deg and 20 deg/s, respectively.

Conclusions

Kinematic VIBF did not increase the rate of skill acquisition or improve performance when controlling a virtual myoelectric prosthetic arm, whether provided in isolation or coupled with visual feedback. VIBF had a deleterious effect on performance for some individuals, who may have had difficulty integrating kinematic VIBF information into their control strategies.
Literature
1.
go back to reference McCloskey D. Kinesthetic sensibility. Physiol Rev. 1978;58(4):763–820.PubMed McCloskey D. Kinesthetic sensibility. Physiol Rev. 1978;58(4):763–820.PubMed
2.
go back to reference Collins DF, Refshauge KM, Todd G, Gandevia SC. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol. 2005;94(3):1699–706.CrossRefPubMed Collins DF, Refshauge KM, Todd G, Gandevia SC. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol. 2005;94(3):1699–706.CrossRefPubMed
3.
go back to reference Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 1992;67(5):1105–13.PubMed Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 1992;67(5):1105–13.PubMed
4.
go back to reference Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM R. 2011;3(1):55–67.CrossRefPubMed Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM R. 2011;3(1):55–67.CrossRefPubMed
5.
go back to reference Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468–72.CrossRefPubMed Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468–72.CrossRefPubMed
6.
go back to reference Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K. Invasive neural prosthesis for neural signal detection and nerve stimulation. Int J Adapt Control. 2005;19(5):365–75. Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K. Invasive neural prosthesis for neural signal detection and nerve stimulation. Int J Adapt Control. 2005;19(5):365–75.
7.
go back to reference Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.CrossRefPubMed Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.CrossRefPubMed
8.
go back to reference Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10(1):45–54.CrossRefPubMed Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10(1):45–54.CrossRefPubMed
9.
go back to reference Stepp CE, An Q, Matsuoka Y. Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS One. 2012;7(2):e32743.CrossRefPubMedCentralPubMed Stepp CE, An Q, Matsuoka Y. Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS One. 2012;7(2):e32743.CrossRefPubMedCentralPubMed
10.
go back to reference Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3:1212–7.CrossRefPubMed Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3:1212–7.CrossRefPubMed
11.
go back to reference An Q, Matsuoka Y, Stepp CE. Multi-day training with vibrotactile feedback for virtual object manipulation. Zurich: IEEE International Conference on Rehabilitation Robotics (ICORR); 2011. p. 1–5. DOI: 10.1109/ICORR.2011.5975337. An Q, Matsuoka Y, Stepp CE. Multi-day training with vibrotactile feedback for virtual object manipulation. Zurich: IEEE International Conference on Rehabilitation Robotics (ICORR); 2011. p. 1–5. DOI: 10.1109/ICORR.2011.5975337.
12.
go back to reference Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y. Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng. 2013;60(8):2226–32.CrossRefPubMed Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y. Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng. 2013;60(8):2226–32.CrossRefPubMed
13.
go back to reference Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. J Prosthet Orthot. 2006;18(2):57–61.CrossRef Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. J Prosthet Orthot. 2006;18(2):57–61.CrossRef
14.
go back to reference Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. J Prosthet Orthot. 2008;20(2):27–34.CrossRef Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. J Prosthet Orthot. 2008;20(2):27–34.CrossRef
15.
go back to reference Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil. 2011;8(60):1–12. Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil. 2011;8(60):1–12.
16.
go back to reference Stepp CE, Matsuoka Y. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation. Buenos Aires: Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC); 2010. p. 2089–92. DOI: 10.1109/IEMBS.2010.5626120. Stepp CE, Matsuoka Y. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation. Buenos Aires: Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC); 2010. p. 2089–92. DOI: 10.1109/IEMBS.2010.5626120.
17.
go back to reference Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user–prosthesis interaction. IEEE Trans Robot. 2008;24(1):170–84.CrossRef Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user–prosthesis interaction. IEEE Trans Robot. 2008;24(1):170–84.CrossRef
18.
go back to reference Peerdeman B, Boere D, Witteveen H, Hermens H, Stramigioli S, Rietman J, et al. Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev. 2011;48(6):719–38.CrossRefPubMed Peerdeman B, Boere D, Witteveen H, Hermens H, Stramigioli S, Rietman J, et al. Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev. 2011;48(6):719–38.CrossRefPubMed
19.
go back to reference Mann RW, Reimers SD. Kinesthetic sensing for the EMG controlled “Boston Arm”. IEEE Trans Man-Mach Syst. 1970;11(1):110–5.CrossRef Mann RW, Reimers SD. Kinesthetic sensing for the EMG controlled “Boston Arm”. IEEE Trans Man-Mach Syst. 1970;11(1):110–5.CrossRef
20.
go back to reference Bark K, Wheeler JW, Premakumar S, Cutkosky MR. Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. Reno, NE: IEEE International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS); 2008. p. 71–8. DOI: 10.1109/HAPTICS.2008.4479916. Bark K, Wheeler JW, Premakumar S, Cutkosky MR. Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. Reno, NE: IEEE International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS); 2008. p. 71–8. DOI: 10.1109/HAPTICS.2008.4479916.
21.
go back to reference Schlag J, Schlag-Rey M. Through the eye, slowly; delays and localization errors in the visual system. Nat Rev Neurosci. 2002;3(3):191.CrossRefPubMed Schlag J, Schlag-Rey M. Through the eye, slowly; delays and localization errors in the visual system. Nat Rev Neurosci. 2002;3(3):191.CrossRefPubMed
22.
go back to reference Regan D, Gray R, Hamstra S. Evidence for a neural mechanism that encodes angles. Vision Res. 1996;36(2):323.CrossRefPubMed Regan D, Gray R, Hamstra S. Evidence for a neural mechanism that encodes angles. Vision Res. 1996;36(2):323.CrossRefPubMed
23.
go back to reference Lieberman J, Breazeal C. TIKL: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans Robot. 2007;23(5):919–26.CrossRef Lieberman J, Breazeal C. TIKL: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans Robot. 2007;23(5):919–26.CrossRef
24.
go back to reference Shmuelof L, Krakauer JW, Mazzoni P. How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. J Neurophysiol. 2012;108(2):578–94.CrossRefPubMedCentralPubMed Shmuelof L, Krakauer JW, Mazzoni P. How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. J Neurophysiol. 2012;108(2):578–94.CrossRefPubMedCentralPubMed
25.
go back to reference Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381.CrossRefPubMed Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381.CrossRefPubMed
26.
go back to reference Winter DA. Biomechanics and motor control of human movement. Fourthth ed. Hoboken, New Jersey: John Wiley & Sons, Inc; 2009.CrossRef Winter DA. Biomechanics and motor control of human movement. Fourthth ed. Hoboken, New Jersey: John Wiley & Sons, Inc; 2009.CrossRef
27.
go back to reference Hill AV. The heat of shortening and the dynamic constants of muscle. P Roy Soc Lond B Bio. 1938;126B:136–95.CrossRef Hill AV. The heat of shortening and the dynamic constants of muscle. P Roy Soc Lond B Bio. 1938;126B:136–95.CrossRef
28.
go back to reference Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1988;17(4):359–411. Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1988;17(4):359–411.
29.
go back to reference Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170–92.CrossRefPubMedCentralPubMed Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170–92.CrossRefPubMedCentralPubMed
30.
go back to reference Bahler AS. Series elastic component of mammalian skeletal muscle. Am J Physiol. 1967;213(6):1560–4.PubMed Bahler AS. Series elastic component of mammalian skeletal muscle. Am J Physiol. 1967;213(6):1560–4.PubMed
31.
go back to reference Hasson CJ, Caldwell GE. Effects of age on mechanical properties of dorsiflexor and plantarflexor muscles. Ann Biomed Eng. 2012;40(5):1088–101.CrossRefPubMed Hasson CJ, Caldwell GE. Effects of age on mechanical properties of dorsiflexor and plantarflexor muscles. Ann Biomed Eng. 2012;40(5):1088–101.CrossRefPubMed
32.
go back to reference Hasson CJ. Neural representation of muscle dynamics in voluntary movement control. Exp Brain Res. 2014;232(7):2105–19.CrossRefPubMed Hasson CJ. Neural representation of muscle dynamics in voluntary movement control. Exp Brain Res. 2014;232(7):2105–19.CrossRefPubMed
33.
go back to reference Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67.CrossRefPubMed Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67.CrossRefPubMed
34.
go back to reference Manal K, Gonzalez RV, Lloyd DG, Buchanan TS. A real-time EMG-driven virtual arm. Comput Biol Med. 2002;32(1):25–36.CrossRefPubMed Manal K, Gonzalez RV, Lloyd DG, Buchanan TS. A real-time EMG-driven virtual arm. Comput Biol Med. 2002;32(1):25–36.CrossRefPubMed
35.
go back to reference Winters JM, Stark L. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech. 1988;21(12):1027–41.CrossRefPubMed Winters JM, Stark L. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech. 1988;21(12):1027–41.CrossRefPubMed
36.
go back to reference Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes. Cambridge MA: Cambridge University Press; 1990. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes. Cambridge MA: Cambridge University Press; 1990.
37.
go back to reference Roll J, Vedel J. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 1982;47(2):177–90.CrossRefPubMed Roll J, Vedel J. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 1982;47(2):177–90.CrossRefPubMed
38.
go back to reference Stepp CE, Matsuoka Y. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(1):31–7.CrossRefPubMedCentralPubMed Stepp CE, Matsuoka Y. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(1):31–7.CrossRefPubMedCentralPubMed
39.
go back to reference Murray AM, Klatzky RL, Khosla PK. Psychophysical characterization and testbed validation of a wearable vibrotactile glove for telemanipulation. Presence Teleop Virt. 2003;12(2):156–82.CrossRef Murray AM, Klatzky RL, Khosla PK. Psychophysical characterization and testbed validation of a wearable vibrotactile glove for telemanipulation. Presence Teleop Virt. 2003;12(2):156–82.CrossRef
40.
go back to reference Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.CrossRefPubMedCentralPubMed Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.CrossRefPubMedCentralPubMed
41.
go back to reference Zwislocki J, Maire F, Feldman A, Rubin H. On the effect of practice and motivation on the threshold of audibility. J Acoust Soc Am. 1958;30(4):254–62.CrossRef Zwislocki J, Maire F, Feldman A, Rubin H. On the effect of practice and motivation on the threshold of audibility. J Acoust Soc Am. 1958;30(4):254–62.CrossRef
42.
go back to reference Sober SJ, Sabes PN. Flexible strategies for sensory integration during motor planning. Nat Neurosci. 2005;8(4):490–7.PubMedCentralPubMed Sober SJ, Sabes PN. Flexible strategies for sensory integration during motor planning. Nat Neurosci. 2005;8(4):490–7.PubMedCentralPubMed
43.
go back to reference Cheng L-T, Kazman R, Robinson J. Vibrotactile feedback in delicate virtual reality operations. In: Proceedings of the fourth ACM international conference on multimedia. 1997. p. 243–51. Cheng L-T, Kazman R, Robinson J. Vibrotactile feedback in delicate virtual reality operations. In: Proceedings of the fourth ACM international conference on multimedia. 1997. p. 243–51.
44.
go back to reference Zheng Y, Morrell JB. A vibrotactile feedback approach to posture guidance. In: 2010 IEEE haptics symposium. 2010. p. 351–8.CrossRef Zheng Y, Morrell JB. A vibrotactile feedback approach to posture guidance. In: 2010 IEEE haptics symposium. 2010. p. 351–8.CrossRef
45.
go back to reference Blank A, Okamura AM, Kuchenbecker KJ. Identifying the role of proprioception in upper-limb prosthesis control: studies on targeted motion. ACM Trans Appl Percept. 2010;7(3):15.CrossRef Blank A, Okamura AM, Kuchenbecker KJ. Identifying the role of proprioception in upper-limb prosthesis control: studies on targeted motion. ACM Trans Appl Percept. 2010;7(3):15.CrossRef
46.
go back to reference Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7):1317–29.CrossRefPubMed Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7):1317–29.CrossRefPubMed
47.
go back to reference Wilska A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol Scand. 1954;31(2–3):285–9.CrossRef Wilska A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol Scand. 1954;31(2–3):285–9.CrossRef
48.
go back to reference Todorov E, Jordan M. A minimal intervention principle for coordinated movement. In: Advances in neural information processing systems: proceedings from the 2002 conference, vol. 15. Cambridge, MA: The MIT Press; 2003. p. 27–34. Todorov E, Jordan M. A minimal intervention principle for coordinated movement. In: Advances in neural information processing systems: proceedings from the 2002 conference, vol. 15. Cambridge, MA: The MIT Press; 2003. p. 27–34.
49.
go back to reference Stepp CE, Matsuoka Y. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):677–85.CrossRefPubMedCentralPubMed Stepp CE, Matsuoka Y. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):677–85.CrossRefPubMedCentralPubMed
50.
go back to reference Sainburg RL, Poizner H, Ghez C. Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol. 1993;70:2136.PubMed Sainburg RL, Poizner H, Ghez C. Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol. 1993;70:2136.PubMed
51.
go back to reference Cipriani C, Segil JL, Clemente F, Edin B. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand. Exp Brain Res. 2014;232(11):3421–9.CrossRefPubMed Cipriani C, Segil JL, Clemente F, Edin B. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand. Exp Brain Res. 2014;232(11):3421–9.CrossRefPubMed
52.
go back to reference Fougner A, Stavdahl O, Kyberd PJ, Losier YG, Parker PA. Control of upper limb prostheses: terminology and proportional myoelectric control—a review. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):663–77.CrossRefPubMed Fougner A, Stavdahl O, Kyberd PJ, Losier YG, Parker PA. Control of upper limb prostheses: terminology and proportional myoelectric control—a review. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):663–77.CrossRefPubMed
53.
go back to reference Eilenberg MF, Geyer H, Herr H. Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):164–73.CrossRefPubMed Eilenberg MF, Geyer H, Herr H. Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):164–73.CrossRefPubMed
Metadata
Title
Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm
Authors
Christopher J Hasson
Julia Manczurowsky
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0025-5

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue