Skip to main content
Top
Published in: Immunity & Ageing 1/2016

Open Access 01-12-2016 | Research

Role of androgens in dhea-induced rack1 expression and cytokine modulation in monocytes

Authors: Emanuela Corsini, Valentina Galbiati, Angela Papale, Elena Kummer, Antonella Pinto, Melania M. Serafini, Antonio Guaita, Roberto Spezzano, Donatella Caruso, Marina Marinovich, Marco Racchi

Published in: Immunity & Ageing | Issue 1/2016

Login to get access

Abstract

Background

Over the past fifteen years, we have demonstrated that cortisol and dehydroepiandrosterone (DHEA) have opposite effects on the regulation of protein kinase C (PKC) activity in the context of the immune system. The anti-glucocorticoid effect of DHEA is also related to the regulation of splicing of the glucocorticoid receptor (GR), promoting the expression of GRβ isoform, which acts as a negative dominant form on GRα activity. Moreover, it is very well known that DHEA can be metabolized to androgens like testosterone, dihydrotestosterone (DHT), and its metabolites 3α-diol and 3β-diol, which exert their function through the binding of the androgen receptor (AR). Based on this knowledge, and on early observation that castrated animals show results similar to those observed in old animals, the purpose of this study is to investigate the role of androgens and the androgen receptor (AR) in DHEA-induced expression of the PKC signaling molecule RACK1 (Receptor for Activated C Kinase 1) and cytokine production in monocytes.

Results

Here we demonstrated the ability of the anti-androgen molecule, flutamide, to counteract the stimulatory effects of DHEA on RACK1 and GRβ expression, and cytokine production. In both THP-1 cells and human peripheral blood mononuclear cells (PBMC), flutamide blocked the effects of DHEA, suggesting a role of the AR in these effects. As DHEA is not considered a direct AR agonist, we investigated the metabolism of DHEA in THP-1 cells. We evaluated the ability of testosterone, DHT, and androstenedione to induce RACK1 expression and cytokine production. In analogy to DHEA, an increase in RACK1 expression and in LPS-induced IL–8 and TNF–α production was observed after treatment with these selected androgens. Finally, the silencing of AR with siRNA completely prevented DHEA-induced RACK1 mRNA expression, supporting the idea that AR is involved in DHEA effects.

Conclusions

We demonstrated that the conversion of DHEA to active androgens, which act via AR, is a key mechanism in the effect of DHEA on RACK1 expression and monocyte activation. This data supports the existence of a complex hormonal balance in the control of immune modulation, which can be further studied in the context of immunosenescence and endocrinosenescence.
Literature
1.
go back to reference Corsini E, Battaini F, Lucchi L, Marinovich M, Racchi M, Govoni S, Galli CL. A defective protein kinase C anchoring system underlying age-associated impairment in TNF-alpha production in rat macrophages. J Immunol. 1999;163:3468–73.PubMed Corsini E, Battaini F, Lucchi L, Marinovich M, Racchi M, Govoni S, Galli CL. A defective protein kinase C anchoring system underlying age-associated impairment in TNF-alpha production in rat macrophages. J Immunol. 1999;163:3468–73.PubMed
2.
go back to reference Corsini E, Lucchi L, Meroni M, Racchi M, Solerte B, Fioravanti M, Viviani B, Marinovich M, Govoni S, Galli CL. In vivo dehydroepiandrosterone restores age-associated defects in the protein kinase C signal transduction pathway and related functional responses. J Immunol. 2002;168:1753–8.CrossRefPubMed Corsini E, Lucchi L, Meroni M, Racchi M, Solerte B, Fioravanti M, Viviani B, Marinovich M, Govoni S, Galli CL. In vivo dehydroepiandrosterone restores age-associated defects in the protein kinase C signal transduction pathway and related functional responses. J Immunol. 2002;168:1753–8.CrossRefPubMed
3.
go back to reference Corsini E, Racchi M, Sinforiani E, Lucchi L, Viviani B, Rovati GE, Govoni S, Galli CL, Marinovich M. Age-related decline in RACK1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. J Leukoc Biol. 2005;77:247–56.CrossRefPubMed Corsini E, Racchi M, Sinforiani E, Lucchi L, Viviani B, Rovati GE, Govoni S, Galli CL, Marinovich M. Age-related decline in RACK1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. J Leukoc Biol. 2005;77:247–56.CrossRefPubMed
4.
go back to reference Racchi M, Sinforiani E, Govoni S, Marinovich M, Galli CL, Corsini E. RACK1 expression and cytokine production in leukocytes obtained from AD patients. Aging Clin Exp Res. 2006;18:153–7.CrossRefPubMed Racchi M, Sinforiani E, Govoni S, Marinovich M, Galli CL, Corsini E. RACK1 expression and cytokine production in leukocytes obtained from AD patients. Aging Clin Exp Res. 2006;18:153–7.CrossRefPubMed
5.
go back to reference Corsini E, Vismara L, Lucchi L, Viviani B, Govoni S, Galli CL, Marinovich M, Racchi M. High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly. J Leukoc Biol. 2006;80:376–82.CrossRefPubMed Corsini E, Vismara L, Lucchi L, Viviani B, Govoni S, Galli CL, Marinovich M, Racchi M. High interleukin-10 production is associated with low antibody response to influenza vaccination in the elderly. J Leukoc Biol. 2006;80:376–82.CrossRefPubMed
6.
go back to reference McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol. 2002;62:1261–73.CrossRefPubMed McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol. 2002;62:1261–73.CrossRefPubMed
7.
go back to reference Adams DR, Ron D, Kiely PA. RACK1, a multifaced scaffolding protein: structure and function. Cell Commun Signal. 2011;6:9–22. Adams DR, Ron D, Kiely PA. RACK1, a multifaced scaffolding protein: structure and function. Cell Commun Signal. 2011;6:9–22.
8.
go back to reference Ron D, Chen CHSP, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994;91:839–43.CrossRefPubMedPubMedCentral Ron D, Chen CHSP, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994;91:839–43.CrossRefPubMedPubMedCentral
9.
go back to reference Pass JM, Zheng HSP, Wead HSPB, Zhang J, Li RC, Bolli R, Ping P. PKCepsilon activation induces dichotomous cardiac phenotypes and modulates PKCepsilon-RACK interactions and RACK expression. Am J Physiol Heart Circ Physiol. 2001;280:946–55. Pass JM, Zheng HSP, Wead HSPB, Zhang J, Li RC, Bolli R, Ping P. PKCepsilon activation induces dichotomous cardiac phenotypes and modulates PKCepsilon-RACK interactions and RACK expression. Am J Physiol Heart Circ Physiol. 2001;280:946–55.
11.
15.
go back to reference Corsini E, Galbiati V, Esser PR, Pinto A, Racchi M, Marinovich M, Martin SF, Galli CL. Role of PKC-β in chemical allergen-induced CD86 expression and IL-8 release in THP-1 cells. Arch Toxicol. 2014;88:415–24.CrossRefPubMed Corsini E, Galbiati V, Esser PR, Pinto A, Racchi M, Marinovich M, Martin SF, Galli CL. Role of PKC-β in chemical allergen-induced CD86 expression and IL-8 release in THP-1 cells. Arch Toxicol. 2014;88:415–24.CrossRefPubMed
16.
17.
go back to reference Traish AM, Kang HP, Saad F, Guay AT. Dehydroepiandrosterone (DHEA)–a precursor steroid or an active hormone in human physiology. J Sex Med. 2011;8:2960–82.CrossRefPubMed Traish AM, Kang HP, Saad F, Guay AT. Dehydroepiandrosterone (DHEA)–a precursor steroid or an active hormone in human physiology. J Sex Med. 2011;8:2960–82.CrossRefPubMed
18.
go back to reference Labrie F, Luu-The V, Labrie C, Simard J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001;22:185–212.CrossRefPubMed Labrie F, Luu-The V, Labrie C, Simard J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001;22:185–212.CrossRefPubMed
19.
go back to reference Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38:89–116.CrossRefPubMedPubMedCentral Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38:89–116.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Pinto A, Malacrida B, Oieni J, Serafini MM, Davin A, Galbiati V, Corsini E, Racchi M. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. Br J Pharmacol. 2015;172:2918–27.CrossRefPubMed Pinto A, Malacrida B, Oieni J, Serafini MM, Davin A, Galbiati V, Corsini E, Racchi M. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. Br J Pharmacol. 2015;172:2918–27.CrossRefPubMed
22.
go back to reference Adler AJ, Danielsen M, Robins DM. Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc Natl Acad Sci U S A. 1992;89:11660–3.CrossRefPubMedPubMedCentral Adler AJ, Danielsen M, Robins DM. Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc Natl Acad Sci U S A. 1992;89:11660–3.CrossRefPubMedPubMedCentral
23.
go back to reference Schoenmakers E, Verrijdt G, Peeters B, Verhoeven G, Rombauts W, Claessens F. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. J Biol Chem. 2000;275:12290–7.CrossRefPubMed Schoenmakers E, Verrijdt G, Peeters B, Verhoeven G, Rombauts W, Claessens F. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. J Biol Chem. 2000;275:12290–7.CrossRefPubMed
24.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed
25.
go back to reference Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC. Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol. 2010;22:1137–47.CrossRefPubMed Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC. Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol. 2010;22:1137–47.CrossRefPubMed
26.
go back to reference Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23:37–45.CrossRefPubMed Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23:37–45.CrossRefPubMed
27.
go back to reference Buoso E, Lanni C, Molteni E, Rousset F, Corsini E, Racchi M. Opposing effects of cortisol and dehydroepiandrosterone on the expression of the receptor for activated C kinase 1: implications in immunosenescence. Exp Gerontol. 2011;46:877–83.CrossRefPubMed Buoso E, Lanni C, Molteni E, Rousset F, Corsini E, Racchi M. Opposing effects of cortisol and dehydroepiandrosterone on the expression of the receptor for activated C kinase 1: implications in immunosenescence. Exp Gerontol. 2011;46:877–83.CrossRefPubMed
28.
go back to reference Racchi M, Balduzzi C, Corsini E. Dehydroepiandrosterone (DHEA) and the aging brain: flipping a coin in the “fountain of youth”. CNS Drug Rev. 2003;9:21–40.CrossRefPubMed Racchi M, Balduzzi C, Corsini E. Dehydroepiandrosterone (DHEA) and the aging brain: flipping a coin in the “fountain of youth”. CNS Drug Rev. 2003;9:21–40.CrossRefPubMed
29.
go back to reference Del Vecchio I, Zuccotti A, Pisano F, Canneva F, Lenzken SC, Rousset F, Corsini E, Govoni S, Racchi M. Functional mapping of the promoter region of the GNB2L1 human gene coding for RACK1 scaffold protein. Gene. 2009;430:17–29.CrossRefPubMed Del Vecchio I, Zuccotti A, Pisano F, Canneva F, Lenzken SC, Rousset F, Corsini E, Govoni S, Racchi M. Functional mapping of the promoter region of the GNB2L1 human gene coding for RACK1 scaffold protein. Gene. 2009;430:17–29.CrossRefPubMed
30.
go back to reference Kaufman M, Pinsky L. The dissociation of testosterone- and 5 alpha-dihydrotestosterone-receptor complexes formed within cultured human genital skin fibroblasts. J Steroid Biochem. 1983;18:121–5.CrossRefPubMed Kaufman M, Pinsky L. The dissociation of testosterone- and 5 alpha-dihydrotestosterone-receptor complexes formed within cultured human genital skin fibroblasts. J Steroid Biochem. 1983;18:121–5.CrossRefPubMed
31.
go back to reference Cadwallader AB, Rollins DE, Lim CS. Effect of anabolic-androgenic steroids and glucocorticoids on the kinetics of hAR and hGR nucleocytoplasmic translocation. Mol Pharm. 2010;7:689–98.CrossRefPubMedPubMedCentral Cadwallader AB, Rollins DE, Lim CS. Effect of anabolic-androgenic steroids and glucocorticoids on the kinetics of hAR and hGR nucleocytoplasmic translocation. Mol Pharm. 2010;7:689–98.CrossRefPubMedPubMedCentral
32.
go back to reference Lai JJ, Lai KP, Chuang KH, Chang P, Yu IC, Lin WJ, Chang C. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest. 2009;119:3739–51.CrossRefPubMedPubMedCentral Lai JJ, Lai KP, Chuang KH, Chang P, Yu IC, Lin WJ, Chang C. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest. 2009;119:3739–51.CrossRefPubMedPubMedCentral
33.
go back to reference Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY, Lai KP, Lin HY, Hsu JW, Keng P, Wu MC, Chang C. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med. 2009;206:1181–99.CrossRefPubMedPubMedCentral Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY, Lai KP, Lin HY, Hsu JW, Keng P, Wu MC, Chang C. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med. 2009;206:1181–99.CrossRefPubMedPubMedCentral
34.
go back to reference Csaba G. Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung. 2014;61:241–60.CrossRefPubMed Csaba G. Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung. 2014;61:241–60.CrossRefPubMed
35.
go back to reference Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87–94.CrossRefPubMed Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87–94.CrossRefPubMed
Metadata
Title
Role of androgens in dhea-induced rack1 expression and cytokine modulation in monocytes
Authors
Emanuela Corsini
Valentina Galbiati
Angela Papale
Elena Kummer
Antonella Pinto
Melania M. Serafini
Antonio Guaita
Roberto Spezzano
Donatella Caruso
Marina Marinovich
Marco Racchi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2016
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-016-0075-y

Other articles of this Issue 1/2016

Immunity & Ageing 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine