Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Pathology | Research

Changes in lipid metabolism track with the progression of neurofibrillary pathology in tauopathies

Authors: Dominika Olešová, Dana Dobešová, Petra Majerová, Radana Brumarová, Aleš Kvasnička, Štěpán Kouřil, Eva Stevens, Jozef Hanes, Ľubica Fialová, Alena Michalicová, Juraj Piešťanský, Jakub Šinský, Petr Kaňovský, David Friedecký, Andrej Kováč

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Accumulation of tau leads to neuroinflammation and neuronal cell death in tauopathies, including Alzheimer’s disease. As the disease progresses, there is a decline in brain energy metabolism. However, the role of tau protein in regulating lipid metabolism remains less characterized and poorly understood.

Methods

We used a transgenic rat model for tauopathy to reveal metabolic alterations induced by neurofibrillary pathology. Transgenic rats express a tau fragment truncated at the N- and C-terminals. For phenotypic profiling, we performed targeted metabolomic and lipidomic analysis of brain tissue, CSF, and plasma, based on the LC-MS platform. To monitor disease progression, we employed samples from transgenic and control rats aged 4, 6, 8, 10, 12, and 14 months. To study neuron-glia interplay in lipidome changes induced by pathological tau we used well well-established multicomponent cell model system. Univariate and multivariate statistical approaches were used for data evaluation.

Results

We showed that tau has an important role in the deregulation of lipid metabolism. In the lipidomic study, pathological tau was associated with higher production of lipids participating in protein fibrillization, membrane reorganization, and inflammation. Interestingly, significant changes have been found in the early stages of tauopathy before the formation of high-molecular-weight tau aggregates and neurofibrillary pathology. Increased secretion of pathological tau protein in vivo and in vitro induced upregulated production of phospholipids and sphingolipids and accumulation of lipid droplets in microglia. We also found that this process depended on the amount of extracellular tau. During the later stages of tauopathy, we found a connection between the transition of tau into an insoluble fraction and changes in brain metabolism.

Conclusion

Our results revealed that lipid metabolism is significantly affected during different stages of tau pathology. Thus, our results demonstrate that the dysregulation of lipid composition by pathological tau disrupts the microenvironment, further contributing to the propagation of pathology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.PubMedCrossRef Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.PubMedCrossRef
2.
go back to reference Iqbal K, del Alonso C, Chen A, Chohan S, El-Akkad MO, Gong E. C-X, Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA) - molecular basis of Disease. 2005;1739:198–210. Iqbal K, del Alonso C, Chen A, Chohan S, El-Akkad MO, Gong E. C-X, Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA) - molecular basis of Disease. 2005;1739:198–210.
3.
4.
go back to reference Cantrelle F-X, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS et al. Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-Terminus and modulate tau self-assembly into Fibrillar aggregates. Front Mol Neurosci. 2021;14. Cantrelle F-X, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS et al. Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-Terminus and modulate tau self-assembly into Fibrillar aggregates. Front Mol Neurosci. 2021;14.
5.
go back to reference Kawarabayashi T. Dimeric amyloid protein rapidly accumulates in lipid rafts followed by Apolipoprotein E and Phosphorylated Tau Accumulation in the Tg2576 mouse model of Alzheimer’s Disease. J Neurosci. 2004;24:3801–9.PubMedPubMedCentralCrossRef Kawarabayashi T. Dimeric amyloid protein rapidly accumulates in lipid rafts followed by Apolipoprotein E and Phosphorylated Tau Accumulation in the Tg2576 mouse model of Alzheimer’s Disease. J Neurosci. 2004;24:3801–9.PubMedPubMedCentralCrossRef
6.
go back to reference Gellermann GP, Appel TR, Davies P, Diekmann S. Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids. Biol Chem. 2006;387. Gellermann GP, Appel TR, Davies P, Diekmann S. Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids. Biol Chem. 2006;387.
7.
go back to reference Lee JH, Han J, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med. 2022;179:252–65.PubMedCrossRef Lee JH, Han J, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med. 2022;179:252–65.PubMedCrossRef
8.
go back to reference Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate Interleukin-1β–Induced Changes in Behavior, Monoaminergic Neurotransmitters, and brain inflammation in rats. J Nutr. 2008;138:954–63.PubMedCrossRef Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate Interleukin-1β–Induced Changes in Behavior, Monoaminergic Neurotransmitters, and brain inflammation in rats. J Nutr. 2008;138:954–63.PubMedCrossRef
9.
go back to reference Don AS, Hsiao J-HT, Bleasel JM, Couttas TA, Halliday GM, Kim WS. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun. 2014;2:150.PubMedPubMedCentralCrossRef Don AS, Hsiao J-HT, Bleasel JM, Couttas TA, Halliday GM, Kim WS. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun. 2014;2:150.PubMedPubMedCentralCrossRef
10.
go back to reference Bohdanowicz M, Grinstein S. Role of phospholipids in Endocytosis, phagocytosis, and Macropinocytosis. Physiol Rev. 2013;93:69–106.PubMedCrossRef Bohdanowicz M, Grinstein S. Role of phospholipids in Endocytosis, phagocytosis, and Macropinocytosis. Physiol Rev. 2013;93:69–106.PubMedCrossRef
11.
go back to reference Fanni AM, Vander Zanden CM, Majewska PV, Majewski J, Chi EY. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J Biol Chem. 2019;294:15304–17.PubMedPubMedCentralCrossRef Fanni AM, Vander Zanden CM, Majewska PV, Majewski J, Chi EY. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. J Biol Chem. 2019;294:15304–17.PubMedPubMedCentralCrossRef
12.
go back to reference Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis. 2020;19:113.PubMedPubMedCentralCrossRef Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis. 2020;19:113.PubMedPubMedCentralCrossRef
14.
go back to reference Karunakaran I, Alam S, Jayagopi S, Frohberger SJ, Hansen JN, Kuehlwein J, et al. Neural sphingosine 1-phosphate accumulation activates microglia and links impaired autophagy and inflammation. Glia. 2019;67:1859–72.PubMedCrossRef Karunakaran I, Alam S, Jayagopi S, Frohberger SJ, Hansen JN, Kuehlwein J, et al. Neural sphingosine 1-phosphate accumulation activates microglia and links impaired autophagy and inflammation. Glia. 2019;67:1859–72.PubMedCrossRef
17.
go back to reference Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, et al. Development of a high Coverage Pseudotargeted Lipidomics Method based on Ultra-high Performance Liquid Chromatography–Mass Spectrometry. Anal Chem. 2018;90:7608–16.PubMedPubMedCentralCrossRef Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, et al. Development of a high Coverage Pseudotargeted Lipidomics Method based on Ultra-high Performance Liquid Chromatography–Mass Spectrometry. Anal Chem. 2018;90:7608–16.PubMedPubMedCentralCrossRef
18.
go back to reference Drotleff B, Roth SR, Henkel K, Calderón C, Schlotterbeck J, Neukamm MA, et al. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition. Anal Bioanal Chem. 2020;412:2303–14.PubMedPubMedCentralCrossRef Drotleff B, Roth SR, Henkel K, Calderón C, Schlotterbeck J, Neukamm MA, et al. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition. Anal Bioanal Chem. 2020;412:2303–14.PubMedPubMedCentralCrossRef
19.
go back to reference Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7:872–81.PubMedPubMedCentralCrossRef Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7:872–81.PubMedPubMedCentralCrossRef
20.
go back to reference Puris E, Kouřil Š, Najdekr L, Auriola S, Loppi S, Korhonen P, et al. Metabolomic, Lipidomic and Proteomic Characterisation of Lipopolysaccharide-induced inflammation mouse model. Neuroscience. 2022;496:165–78.PubMedCrossRef Puris E, Kouřil Š, Najdekr L, Auriola S, Loppi S, Korhonen P, et al. Metabolomic, Lipidomic and Proteomic Characterisation of Lipopolysaccharide-induced inflammation mouse model. Neuroscience. 2022;496:165–78.PubMedCrossRef
21.
go back to reference Zilkova M, Zilka N, Kovac A, Kovacech B, Skrabana R, Skrabanova M, et al. Hyperphosphorylated Truncated protein tau induces Caspase-3 independent apoptosis-like Pathway in the Alzheimer’s Disease Cellular Model. J Alzheimer’s Disease. 2011;23:161–9.CrossRef Zilkova M, Zilka N, Kovac A, Kovacech B, Skrabana R, Skrabanova M, et al. Hyperphosphorylated Truncated protein tau induces Caspase-3 independent apoptosis-like Pathway in the Alzheimer’s Disease Cellular Model. J Alzheimer’s Disease. 2011;23:161–9.CrossRef
22.
go back to reference Lee VM-Y, Wang J, Trojanowski JQ. [6] purification of paired helical filament tau and normal tau from human brain tissue. Methods in Enyzmologzy. Academic; 1999. pp. 81–9. Lee VM-Y, Wang J, Trojanowski JQ. [6] purification of paired helical filament tau and normal tau from human brain tissue. Methods in Enyzmologzy. Academic; 1999. pp. 81–9.
23.
go back to reference Gardlo A, Friedecký D, Najdekr L, Karlíková R, Adam T. Metabol: The statistical analysis of metabolomic data. 2019. Gardlo A, Friedecký D, Najdekr L, Karlíková R, Adam T. Metabol: The statistical analysis of metabolomic data. 2019.
24.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–504.PubMedPubMedCentralCrossRef
25.
go back to reference Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–94.PubMedPubMedCentralCrossRef Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–94.PubMedPubMedCentralCrossRef
26.
go back to reference Molenaar MR, Jeucken A, van de Wassenaar TA, Brouwers JF, Helms JB. LION/web: a web-based ontology enrichment tool for lipidomic data analysis. Gigascience. 2019;8. Molenaar MR, Jeucken A, van de Wassenaar TA, Brouwers JF, Helms JB. LION/web: a web-based ontology enrichment tool for lipidomic data analysis. Gigascience. 2019;8.
27.
go back to reference Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res Ther. 2020;12:26.PubMedPubMedCentralCrossRef Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res Ther. 2020;12:26.PubMedPubMedCentralCrossRef
28.
go back to reference Tumati S, Opmeer EM, Marsman J-BC, Martens S, Reesink FE, De Deyn PP, et al. Lower Choline and Myo-Inositol in Temporo-Parietal cortex is Associated with apathy in Amnestic MCI. Front Aging Neurosci. 2018;10:1–9.CrossRef Tumati S, Opmeer EM, Marsman J-BC, Martens S, Reesink FE, De Deyn PP, et al. Lower Choline and Myo-Inositol in Temporo-Parietal cortex is Associated with apathy in Amnestic MCI. Front Aging Neurosci. 2018;10:1–9.CrossRef
29.
go back to reference Huang W, Ph D, Alexander GE, Daly EM, Shetty HU, Krasuski JS, et al. High brain myo-inositol levels in the Predementia phase of Alzheimer ’ s disease in adults with down ’ s syndrome. Am J Psychiatry. 1999;156:1879–86.PubMedCrossRef Huang W, Ph D, Alexander GE, Daly EM, Shetty HU, Krasuski JS, et al. High brain myo-inositol levels in the Predementia phase of Alzheimer ’ s disease in adults with down ’ s syndrome. Am J Psychiatry. 1999;156:1879–86.PubMedCrossRef
31.
go back to reference Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative Modification of Creatine Kinase BB in Alzheimer’s Disease Brain. J Neurochem. 2002;74:2520–7.CrossRef Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative Modification of Creatine Kinase BB in Alzheimer’s Disease Brain. J Neurochem. 2002;74:2520–7.CrossRef
32.
go back to reference Barnes VM, Teles R, Trivedi HM, Devizio W, Xu T, Mitchell MW, et al. Acceleration of Purine Degradation by Periodontal diseases. J Dent Res. 2009;88:851–5.PubMedCrossRef Barnes VM, Teles R, Trivedi HM, Devizio W, Xu T, Mitchell MW, et al. Acceleration of Purine Degradation by Periodontal diseases. J Dent Res. 2009;88:851–5.PubMedCrossRef
33.
go back to reference Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic dysregulation contributes to the progression of Alzheimer’s Disease. Front Neurosci. 2020;14. Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic dysregulation contributes to the progression of Alzheimer’s Disease. Front Neurosci. 2020;14.
35.
go back to reference Pascente R, Frigerio F, Rizzi M, Porcu L, Boido M, Davids J, et al. Cognitive deficits and brain myo-inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiol Dis. 2016;93:146–55.PubMedCrossRef Pascente R, Frigerio F, Rizzi M, Porcu L, Boido M, Davids J, et al. Cognitive deficits and brain myo-inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiol Dis. 2016;93:146–55.PubMedCrossRef
36.
go back to reference Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.PubMedPubMedCentralCrossRef Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.PubMedPubMedCentralCrossRef
37.
go back to reference Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer’s Disease: From Basic Neurobiology to Clinical Approaches. Perry G, Avila J, Moreira PI, Sorensen AA, Tabaton M, editors. Journal of Alzheimer’s Disease. 2018;64:S405–26. Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer’s Disease: From Basic Neurobiology to Clinical Approaches. Perry G, Avila J, Moreira PI, Sorensen AA, Tabaton M, editors. Journal of Alzheimer’s Disease. 2018;64:S405–26.
40.
go back to reference Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, et al. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun. 2020;11:5698.PubMedPubMedCentralCrossRef Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, et al. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun. 2020;11:5698.PubMedPubMedCentralCrossRef
42.
go back to reference Tan ST, Ramesh T, Toh XR, Nguyen LN. Emerging roles of lysophospholipids in health and disease. Prog Lipid Res. 2020;80:101068.PubMedCrossRef Tan ST, Ramesh T, Toh XR, Nguyen LN. Emerging roles of lysophospholipids in health and disease. Prog Lipid Res. 2020;80:101068.PubMedCrossRef
43.
go back to reference Sagy-Bross C, Hadad N, Levy R. Cytosolic phospholipase A2α upregulation mediates apoptotic neuronal death induced by aggregated amyloid-β peptide 1–42. Neurochem Int. 2013;63:541–50.PubMedCrossRef Sagy-Bross C, Hadad N, Levy R. Cytosolic phospholipase A2α upregulation mediates apoptotic neuronal death induced by aggregated amyloid-β peptide 1–42. Neurochem Int. 2013;63:541–50.PubMedCrossRef
44.
go back to reference Sabogal-Guáqueta AM, Villamil-Ortiz JG, Arias-Londoño JD, Cardona-Gómez GP. Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as hippocampal Indicator of Postischemic Cognitive impairment in rats. Front Neurosci. 2018;12. Sabogal-Guáqueta AM, Villamil-Ortiz JG, Arias-Londoño JD, Cardona-Gómez GP. Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as hippocampal Indicator of Postischemic Cognitive impairment in rats. Front Neurosci. 2018;12.
45.
go back to reference Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J et al. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury. Chidlow G, editor. PLoS One. 2016;11:e0153608. Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J et al. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury. Chidlow G, editor. PLoS One. 2016;11:e0153608.
46.
go back to reference Palavicini JP, Wang C, Chen L, Hosang K, Wang J, Tomiyama T, et al. Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A2 in a spatial-specific manner. Acta Neuropathol Commun. 2017;5:56.PubMedPubMedCentralCrossRef Palavicini JP, Wang C, Chen L, Hosang K, Wang J, Tomiyama T, et al. Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A2 in a spatial-specific manner. Acta Neuropathol Commun. 2017;5:56.PubMedPubMedCentralCrossRef
47.
go back to reference Sheikh AM, Nagai A. Lysophosphatidylcholine modulates fibril formation of amyloid beta peptide. FEBS J. 2011;278:634–42.PubMedCrossRef Sheikh AM, Nagai A. Lysophosphatidylcholine modulates fibril formation of amyloid beta peptide. FEBS J. 2011;278:634–42.PubMedCrossRef
48.
go back to reference Pedersen JN, Jiang Z, Christiansen G, Lee JC, Pedersen JS, Otzen DE. Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. Biochim et Biophys Acta (BBA) - Proteins Proteom. 2019;1867:519–28.CrossRef Pedersen JN, Jiang Z, Christiansen G, Lee JC, Pedersen JS, Otzen DE. Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. Biochim et Biophys Acta (BBA) - Proteins Proteom. 2019;1867:519–28.CrossRef
49.
go back to reference Liu G-Y, Moon SH, Jenkins CM, Sims HF, Guan S, Gross RW. A functional role for eicosanoid-lysophospholipids in activating monocyte signaling. J Biol Chem. 2020;295:12167–80.PubMedPubMedCentralCrossRef Liu G-Y, Moon SH, Jenkins CM, Sims HF, Guan S, Gross RW. A functional role for eicosanoid-lysophospholipids in activating monocyte signaling. J Biol Chem. 2020;295:12167–80.PubMedPubMedCentralCrossRef
50.
go back to reference Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia colonization of developing zebrafish midbrain is promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev Cell. 2016;38:214–22.PubMedCrossRef Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia colonization of developing zebrafish midbrain is promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev Cell. 2016;38:214–22.PubMedCrossRef
51.
go back to reference Greiner AJ, Richardson RJ, Worden RM, Ofoli RY. Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes. Biochimica et Biophysica Acta (BBA) -. Biomembranes. 2010;1798:1533–9.CrossRef Greiner AJ, Richardson RJ, Worden RM, Ofoli RY. Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes. Biochimica et Biophysica Acta (BBA) -. Biomembranes. 2010;1798:1533–9.CrossRef
52.
go back to reference Zilka N, Stozicka Z, Kovac A, Pilipcinec E, Bugos O, Novak M. Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol. 2009;209:16–25.PubMedCrossRef Zilka N, Stozicka Z, Kovac A, Pilipcinec E, Bugos O, Novak M. Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol. 2009;209:16–25.PubMedCrossRef
55.
58.
go back to reference Asai H, Ikezu S, Woodbury ME, Yonemoto GMS, Cui L, Ikezu T. Accelerated neurodegeneration and Neuroinflammation in transgenic mice expressing P301L tau mutant and Tau-Tubulin Kinase 1. Am J Pathol. 2014;184:808–18.PubMedPubMedCentralCrossRef Asai H, Ikezu S, Woodbury ME, Yonemoto GMS, Cui L, Ikezu T. Accelerated neurodegeneration and Neuroinflammation in transgenic mice expressing P301L tau mutant and Tau-Tubulin Kinase 1. Am J Pathol. 2014;184:808–18.PubMedPubMedCentralCrossRef
59.
go back to reference Kovac A, Zilka N, Kazmerova Z, Cente M, Zilkova M, Novak M. Misfolded truncated protein τ induces Innate Immune Response via MAPK Pathway. J Immunol. 2011;187:2732–9.PubMedCrossRef Kovac A, Zilka N, Kazmerova Z, Cente M, Zilkova M, Novak M. Misfolded truncated protein τ induces Innate Immune Response via MAPK Pathway. J Immunol. 2011;187:2732–9.PubMedCrossRef
60.
go back to reference Tu R, Yang W, Hu Z. Inhibition of sphingomyelin synthase 1 affects ceramide accumulation and hydrogen peroxide-induced apoptosis in Neuro-2a cells. NeuroReport. 2016;27:967–73.PubMedCrossRef Tu R, Yang W, Hu Z. Inhibition of sphingomyelin synthase 1 affects ceramide accumulation and hydrogen peroxide-induced apoptosis in Neuro-2a cells. NeuroReport. 2016;27:967–73.PubMedCrossRef
61.
go back to reference Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, et al. Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis. 2006;23:178–89.PubMedCrossRef Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, et al. Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis. 2006;23:178–89.PubMedCrossRef
62.
go back to reference Mielke MMMM, Haughey NJNJ, Bandaru VVR, Zetterberg H, Blennow K, Andreasson U, et al. Cerebrospinal fluid sphingolipids, β-amyloid, and tau in adults at risk for Alzheimer’s disease. Neurobiol Aging. 2014;35:2486–94.PubMedPubMedCentralCrossRef Mielke MMMM, Haughey NJNJ, Bandaru VVR, Zetterberg H, Blennow K, Andreasson U, et al. Cerebrospinal fluid sphingolipids, β-amyloid, and tau in adults at risk for Alzheimer’s disease. Neurobiol Aging. 2014;35:2486–94.PubMedPubMedCentralCrossRef
63.
go back to reference Murray NR, Fields AP. Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J Biol Chem. 1998;273:11514–20.PubMedCrossRef Murray NR, Fields AP. Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J Biol Chem. 1998;273:11514–20.PubMedCrossRef
64.
go back to reference Muraleedharan A, Rotem-Dai N, Strominger I, Anto NP, Isakov N, Monsonego A, et al. Protein kinase C eta is activated in reactive astrocytes of an Alzheimer’s disease mouse model: evidence for its immunoregulatory function in primary astrocytes. Glia. 2021;69:697–714.PubMedCrossRef Muraleedharan A, Rotem-Dai N, Strominger I, Anto NP, Isakov N, Monsonego A, et al. Protein kinase C eta is activated in reactive astrocytes of an Alzheimer’s disease mouse model: evidence for its immunoregulatory function in primary astrocytes. Glia. 2021;69:697–714.PubMedCrossRef
65.
go back to reference Kim H-Y, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res. 2014;56:1–18.PubMedCrossRef Kim H-Y, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res. 2014;56:1–18.PubMedCrossRef
66.
go back to reference Correas I, Díaz-Nido J, Avila J. Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin binding domain. J Biol Chem. 1992;267:15721–8.PubMedCrossRef Correas I, Díaz-Nido J, Avila J. Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin binding domain. J Biol Chem. 1992;267:15721–8.PubMedCrossRef
67.
go back to reference Zhang X, Liu W, Cao Y, Tan W. Hippocampus Proteomics and Brain Lipidomics Reveal Network Dysfunction and Lipid Molecular Abnormalities in APP/PS1 mouse model of Alzheimer’s Disease. J Proteome Res. 2020;19:3427–37.PubMedCrossRef Zhang X, Liu W, Cao Y, Tan W. Hippocampus Proteomics and Brain Lipidomics Reveal Network Dysfunction and Lipid Molecular Abnormalities in APP/PS1 mouse model of Alzheimer’s Disease. J Proteome Res. 2020;19:3427–37.PubMedCrossRef
68.
go back to reference Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, et al. Comparative lipidomic analysis of mouse and human brain with Alzheimer Disease. J Biol Chem. 2012;287:2678–88.PubMedCrossRef Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, et al. Comparative lipidomic analysis of mouse and human brain with Alzheimer Disease. J Biol Chem. 2012;287:2678–88.PubMedCrossRef
69.
go back to reference Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A. 1992;89:1671–5.PubMedPubMedCentralCrossRef Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A. 1992;89:1671–5.PubMedPubMedCentralCrossRef
70.
go back to reference Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, et al. Tau Accumulation causes mitochondrial distribution deficits in neurons in a mouse model of Tauopathy and in human Alzheimer’s Disease Brain. Am J Pathol. 2011;179:2071–82.PubMedPubMedCentralCrossRef Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, et al. Tau Accumulation causes mitochondrial distribution deficits in neurons in a mouse model of Tauopathy and in human Alzheimer’s Disease Brain. Am J Pathol. 2011;179:2071–82.PubMedPubMedCentralCrossRef
71.
go back to reference Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. Khoury J El Editor PLoS One. 2007;2:e536.CrossRef Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. Khoury J El Editor PLoS One. 2007;2:e536.CrossRef
73.
go back to reference Fecher C, Trovò L, Müller SA, Snaidero N, Wettmarshausen J, Heink S, et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat Neurosci. 2019;22:1731–42.PubMedCrossRef Fecher C, Trovò L, Müller SA, Snaidero N, Wettmarshausen J, Heink S, et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat Neurosci. 2019;22:1731–42.PubMedCrossRef
74.
go back to reference Eraso-Pichot A, Brasó-Vives M, Golbano A, Menacho C, Claro E, Galea E, et al. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia. 2018;66:1724–35.PubMedCrossRef Eraso-Pichot A, Brasó-Vives M, Golbano A, Menacho C, Claro E, Galea E, et al. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia. 2018;66:1724–35.PubMedCrossRef
77.
go back to reference Pan X, Nasaruddin M, Bin, Elliott CT, McGuinness B, Passmore AP, Kehoe PG, et al. Alzheimer’s disease–like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging. 2016;38:151–63.PubMedCrossRef Pan X, Nasaruddin M, Bin, Elliott CT, McGuinness B, Passmore AP, Kehoe PG, et al. Alzheimer’s disease–like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging. 2016;38:151–63.PubMedCrossRef
80.
go back to reference Manzo E, O’Conner AG, Barrows JM, Shreiner DD, Birchak GJ, Zarnescu DC. Medium-chain fatty acids, Beta-hydroxybutyric acid and genetic modulation of the Carnitine Shuttle are Protective in a Drosophila model of ALS based on TDP-43. Front Mol Neurosci. 2018;11. Manzo E, O’Conner AG, Barrows JM, Shreiner DD, Birchak GJ, Zarnescu DC. Medium-chain fatty acids, Beta-hydroxybutyric acid and genetic modulation of the Carnitine Shuttle are Protective in a Drosophila model of ALS based on TDP-43. Front Mol Neurosci. 2018;11.
Metadata
Title
Changes in lipid metabolism track with the progression of neurofibrillary pathology in tauopathies
Authors
Dominika Olešová
Dana Dobešová
Petra Majerová
Radana Brumarová
Aleš Kvasnička
Štěpán Kouřil
Eva Stevens
Jozef Hanes
Ľubica Fialová
Alena Michalicová
Juraj Piešťanský
Jakub Šinský
Petr Kaňovský
David Friedecký
Andrej Kováč
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Pathology
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03060-4

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue