Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Reduced acute neuroinflammation and improved functional recovery after traumatic brain injury by α-linolenic acid supplementation in mice

Authors: Abhishek Desai, Taeyeop Park, Jaquel Barnes, Karl Kevala, Huazhen Chen, Hee-Yong Kim

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Adequate consumption of polyunsaturated fatty acids (PUFA) is vital for normal development and functioning of the central nervous system. The long-chain n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid are anti-inflammatory and neuroprotective in the models of central nervous system injury including traumatic brain injury (TBI). In the present study, we tested whether a higher brain DHA status in a mouse model on an adequate dietary α-linolenic acid (ALA) leads to reduced neuroinflammation and improved spontaneous recovery after TBI in comparison to a moderately lowered brain DHA status that can occur in humans.

Methods

Mice reared on diets with differing ALA content were injured by a single cortical contusion impact. Change in the expression of inflammatory cytokines was measured, and cellular changes occurring after injury were analyzed by immunostaining for macrophage/microglia and astrocytes. Behavioral studies included rotarod and beam walk tests and contextual fear conditioning.

Results

Marginal supply (0.04 %) of ALA as the sole dietary source of n-3 PUFA from early gestation produced reduction of brain DHA by 35 % in adult offspring mice in comparison to the mice on adequate ALA diet (3.1 %). The DHA-depleted group showed significantly increased TBI-induced expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in the brain as well as slower functional recovery from motor deficits compared to the adequate ALA group. Despite the reduction of pro-inflammatory cytokine expression, adequate ALA diet did not significantly alter either microglia/macrophage density around the contusion site or the relative M1/M2 phenotype. However, the glial fibrillary acidic protein immunoreactivity was reduced in the injured cerebral cortex of the mice on adequate ALA diet, indicating that astrocyte activation may have contributed to the observed differences in cellular and behavioral responses to TBI.

Conclusions

Increasing the brain DHA level even from a moderately DHA-depleted state can reduce neuroinflammation and improve functional recovery after TBI, suggesting possible improvement of functional outcome by increasing dietary n-3 PUFA in human TBI.
Literature
1.
go back to reference Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–7.CrossRefPubMed Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–7.CrossRefPubMed
2.
go back to reference Sidhu VK, Huang BX, Desai A, Kevala K, Kim HY. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome. Neurobiol Aging. 2016;41:73–85.CrossRefPubMed Sidhu VK, Huang BX, Desai A, Kevala K, Kim HY. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome. Neurobiol Aging. 2016;41:73–85.CrossRefPubMed
3.
go back to reference Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem N. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res. 2001;42(3):419–27.PubMed Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem N. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res. 2001;42(3):419–27.PubMed
4.
go back to reference Hamazaki K, Choi KH, Kim HY. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. J Psychiatric Res. 2010;44(11):688–93.CrossRef Hamazaki K, Choi KH, Kim HY. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. J Psychiatric Res. 2010;44(11):688–93.CrossRef
6.
go back to reference Rossi D, Zlotnik A. The biology of chemokines and their receptors. Ann Rev Immunol. 2000;18(1):217–42.CrossRef Rossi D, Zlotnik A. The biology of chemokines and their receptors. Ann Rev Immunol. 2000;18(1):217–42.CrossRef
7.
go back to reference Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–36.CrossRefPubMed Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–36.CrossRefPubMed
8.
go back to reference Ziebell JM, Morganti-Kossmann MC. Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7(1):22–30.CrossRefPubMed Ziebell JM, Morganti-Kossmann MC. Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7(1):22–30.CrossRefPubMed
9.
go back to reference Zhang W, Hu X, Yang W, Gao Y, Chen J. Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic–ischemic brain injury through anti-inflammatory actions. Stroke. 2010;41(10):2341–7.CrossRefPubMedPubMedCentral Zhang W, Hu X, Yang W, Gao Y, Chen J. Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic–ischemic brain injury through anti-inflammatory actions. Stroke. 2010;41(10):2341–7.CrossRefPubMedPubMedCentral
10.
go back to reference Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004;21(10):1457–67.CrossRefPubMed Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004;21(10):1457–67.CrossRefPubMed
11.
go back to reference Pu H, Guo Y, Zhang W, Huang L, Wang G, Liou AK, Zhang J, Zhang P, Leak RK, Wang Y, Chen J, Gao Y. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(9):1474–84.CrossRefPubMedPubMedCentral Pu H, Guo Y, Zhang W, Huang L, Wang G, Liou AK, Zhang J, Zhang P, Leak RK, Wang Y, Chen J, Gao Y. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(9):1474–84.CrossRefPubMedPubMedCentral
12.
go back to reference Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid–mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40(9):3121–6.CrossRefPubMedPubMedCentral Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid–mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40(9):3121–6.CrossRefPubMedPubMedCentral
13.
go back to reference King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci. 2006;26(17):4672–80.CrossRefPubMed King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci. 2006;26(17):4672–80.CrossRefPubMed
14.
go back to reference Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N, Priestley JV, Michael-Titus AT. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain. 2007;130(11):3004–19.CrossRefPubMed Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N, Priestley JV, Michael-Titus AT. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain. 2007;130(11):3004–19.CrossRefPubMed
15.
go back to reference Bailes JE, Mills JD. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J Neurotrauma. 2010;27(9):1617–24.CrossRefPubMed Bailes JE, Mills JD. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J Neurotrauma. 2010;27(9):1617–24.CrossRefPubMed
16.
17.
go back to reference Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr. 1994;60:189–94.PubMed Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr. 1994;60:189–94.PubMed
18.
go back to reference Jamieson EC, Farquharson J, Logan RW, Howatson AG, Patrick WJA, Weaver LT, Cockburn F. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids. 1999;34(10):1065–71.CrossRefPubMed Jamieson EC, Farquharson J, Logan RW, Howatson AG, Patrick WJA, Weaver LT, Cockburn F. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids. 1999;34(10):1065–71.CrossRefPubMed
19.
go back to reference Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.CrossRefPubMed Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.CrossRefPubMed
20.
go back to reference Wen Z, Kim HY. Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem. 2004;89(6):1368–77.CrossRefPubMed Wen Z, Kim HY. Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem. 2004;89(6):1368–77.CrossRefPubMed
21.
go back to reference Liu HQ, Qiu Y, Mu Y, Zhang XJ, Liu L, Hou XH, Zhang L, Xu XN, Ji AL, Cao R, Yang RH, Wang F. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr Res. 2013;33(10):849–58.CrossRefPubMed Liu HQ, Qiu Y, Mu Y, Zhang XJ, Liu L, Hou XH, Zhang L, Xu XN, Ji AL, Cao R, Yang RH, Wang F. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr Res. 2013;33(10):849–58.CrossRefPubMed
22.
go back to reference Shohami E, Shapira Y, Yadid G, Reisfeld N, Yedgar S. Brain phospholipase A2 is activated after experimental closed head injury in the rat. J Neurochem. 1989;53:1541–6.CrossRefPubMed Shohami E, Shapira Y, Yadid G, Reisfeld N, Yedgar S. Brain phospholipase A2 is activated after experimental closed head injury in the rat. J Neurochem. 1989;53:1541–6.CrossRefPubMed
23.
go back to reference Dhillon HS, Dose JM, Scheff SW, Prasad MR. Time course of changes in lactate and free fatty acids after experimental brain injury and relationship to morphologic damage. Exp Neurol. 1997;146(1):240–9.CrossRefPubMed Dhillon HS, Dose JM, Scheff SW, Prasad MR. Time course of changes in lactate and free fatty acids after experimental brain injury and relationship to morphologic damage. Exp Neurol. 1997;146(1):240–9.CrossRefPubMed
24.
go back to reference Ahmad A, Crupi R, Campolo M, Genovese T, Esposito E, Cuzzocrea S. Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS One. 2013;8(3), e57208.CrossRefPubMedPubMedCentral Ahmad A, Crupi R, Campolo M, Genovese T, Esposito E, Cuzzocrea S. Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS One. 2013;8(3), e57208.CrossRefPubMedPubMedCentral
25.
go back to reference Mullen A, Loscher CE, Roche HM. Anti-inflammatory effects of EPA and DHA are dependent upon time and dose–response elements associated with LPS stimulation in THP-1-derived macrophages. J Nutr Biochem. 2010;21(5):444–50.CrossRefPubMed Mullen A, Loscher CE, Roche HM. Anti-inflammatory effects of EPA and DHA are dependent upon time and dose–response elements associated with LPS stimulation in THP-1-derived macrophages. J Nutr Biochem. 2010;21(5):444–50.CrossRefPubMed
26.
go back to reference Mishra A, Chaudhary A, Sethi S. Oxidized omega-3 fatty acids inhibit NF-kB activation via a PPARα-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24(9):1621–7.CrossRefPubMed Mishra A, Chaudhary A, Sethi S. Oxidized omega-3 fatty acids inhibit NF-kB activation via a PPARα-dependent pathway. Arterioscler Thromb Vasc Biol. 2004;24(9):1621–7.CrossRefPubMed
27.
go back to reference Zhao G, Etherton TD, Martin KR, Gillies PJ, West SG, Kris-Etherton PM. Dietary α-linolenic acid inhibits pro-inflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am J Clin Nutr. 2007;85(2):385–91.PubMed Zhao G, Etherton TD, Martin KR, Gillies PJ, West SG, Kris-Etherton PM. Dietary α-linolenic acid inhibits pro-inflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am J Clin Nutr. 2007;85(2):385–91.PubMed
28.
go back to reference Acarin L, González B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci. 2000;12(10):3505–20.CrossRefPubMed Acarin L, González B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci. 2000;12(10):3505–20.CrossRefPubMed
29.
30.
go back to reference Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci. 2014;71(20):3969–85.CrossRefPubMed Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci. 2014;71(20):3969–85.CrossRefPubMed
31.
go back to reference Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129(10):2761–72.CrossRefPubMed Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129(10):2761–72.CrossRefPubMed
32.
go back to reference Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a pro-inflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia. 2011;59:242–55.CrossRefPubMed Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a pro-inflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia. 2011;59:242–55.CrossRefPubMed
33.
go back to reference Berman JW, Guida MP, Warren J, Amat J, Brosnan CF. Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol. 1996;156(8):3017–23.PubMed Berman JW, Guida MP, Warren J, Amat J, Brosnan CF. Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol. 1996;156(8):3017–23.PubMed
34.
go back to reference Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM. Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol. 1996;156(11):4363–8.PubMed Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM. Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol. 1996;156(11):4363–8.PubMed
35.
go back to reference Begum G, Kintner D, Liu Y, Cramer SW, Sun D. DHA inhibits ER Ca2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem. 2012;120(4):622–30.CrossRefPubMedPubMedCentral Begum G, Kintner D, Liu Y, Cramer SW, Sun D. DHA inhibits ER Ca2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem. 2012;120(4):622–30.CrossRefPubMedPubMedCentral
36.
go back to reference Begum G, Yan HQ, Li L, Singh A, Dixon CE, Sun D. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J Neurosci. 2014;34(10):3743–55.CrossRefPubMed Begum G, Yan HQ, Li L, Singh A, Dixon CE, Sun D. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J Neurosci. 2014;34(10):3743–55.CrossRefPubMed
Metadata
Title
Reduced acute neuroinflammation and improved functional recovery after traumatic brain injury by α-linolenic acid supplementation in mice
Authors
Abhishek Desai
Taeyeop Park
Jaquel Barnes
Karl Kevala
Huazhen Chen
Hee-Yong Kim
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0714-4

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue