Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

Inhibition of the spinal astrocytic JNK/MCP-1 pathway activation correlates with the analgesic effects of tanshinone IIA sulfonate in neuropathic pain

Authors: Jun Tang, Chao Zhu, Zhi-hong Li, Xiao-yu Liu, Shu-kai Sun, Ting Zhang, Zhuo-jing Luo, Hui Zhang, Wei-yan Li

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

Neuropathic pain (NP) continues to be challenging to treat due to lack of effective drugs. Accumulating evidence elucidated that glia-mediated inflammatory reactions play a pivotal role in the introduction and development of NP. Besides, activation of the c-Jun N-terminal kinase (JNK)/monocyte chemoattractant protein-1 (MCP-1) pathway in astrocytes has been reported to be critical for spinal astrocytic activation and neuropathic pain development after spinal nerve ligation (SNL). Tanshinone IIA, a major active component of a traditional Chinese drug, Danshen, possesses potent immuno-suppressive activities. The present study was undertaken to assess whether intraperitoneal administration of tanshinone IIA sulfonate (TIIAS) has analgesic effect on SNL-induced neuropathic pain and whether the inhibition of astrocytic activation and JNK/MCP-1 pathway is involved in the analgesic effect of TIIAS.

Methods

The effects of TIIAS on SNL-induced mechanical allodynia were assessed by behavioral testing. Immunofluorescence histochemical staining was used to detect changes of spinal astrocytes and spinal pJNK expression and localization. Immunofluorescence histochemistry and Western blot analysis were used to quantify the SNL-induced spinal pJNK expression after TIIAS administration. Enzyme-linked immunosorbent assay (ELISA) was used to detect the SNL-induced spinal expression of pro-inflammatory cytokines and MCP-1.

Results

Our results indicated that intraperitoneal TIIAS up-regulated the mechanical paw withdrawal threshold (PWT) of NP, while astrocytic activation was suppressed and accompanied by the down-regulation of IL-1β and TNF-α expression, as well as JNK phosphorylation in the spinal dorsal horn. Additionally, the release of MCP-1 was dose dependently decreased. After co-treatment with TIIAS and JNK inhibitor (SP600125), no significant increases in mechanical PWT and MCP-1 expression were observed compared with the TIIAS-treated group.

Conclusions

The present results suggest that the analgesic effects of TIIAS in neuropathic pain are mainly mediated by the down-regulation of SNL-induced astrocytic activation, which is via the inhibition of JNK/MCP-1 pathway.
Literature
1.
go back to reference Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656.CrossRefPubMed Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656.CrossRefPubMed
3.
go back to reference Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, et al. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol. 2003;60:1524–34.CrossRefPubMed Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, et al. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol. 2003;60:1524–34.CrossRefPubMed
4.
go back to reference O'Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med. 2009;122:S22–32.CrossRefPubMed O'Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med. 2009;122:S22–32.CrossRefPubMed
5.
go back to reference Schestatsky P, Vidor L, Winckler PB, Araujo TG, Caumo W. Promising treatments for neuropathic pain. Arq Neuropsiquiatr. 2014;72:881–8.CrossRefPubMed Schestatsky P, Vidor L, Winckler PB, Araujo TG, Caumo W. Promising treatments for neuropathic pain. Arq Neuropsiquiatr. 2014;72:881–8.CrossRefPubMed
6.
8.
go back to reference Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol. 2013;716:106–19.CrossRefPubMed Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol. 2013;716:106–19.CrossRefPubMed
9.
go back to reference Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci. 2005;28:101–7.CrossRefPubMed Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci. 2005;28:101–7.CrossRefPubMed
11.
go back to reference Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther. 2006;109:210–26.CrossRefPubMed Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther. 2006;109:210–26.CrossRefPubMed
13.
go back to reference Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci. 2009;29:4096–108.CrossRefPubMedCentralPubMed Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci. 2009;29:4096–108.CrossRefPubMedCentralPubMed
14.
go back to reference Old EA, Malcangio M. Chemokine mediated neuron-glia communication and aberrant signalling in neuropathic pain states. Curr Opin Pharmacol. 2012;12:67–73.CrossRefPubMed Old EA, Malcangio M. Chemokine mediated neuron-glia communication and aberrant signalling in neuropathic pain states. Curr Opin Pharmacol. 2012;12:67–73.CrossRefPubMed
15.
go back to reference Gao S, Liu Z, Li H, Little PJ, Liu P, Xu S. Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis. 2012;220:3–10.CrossRefPubMed Gao S, Liu Z, Li H, Little PJ, Liu P, Xu S. Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis. 2012;220:3–10.CrossRefPubMed
16.
go back to reference Tang Q, Han R, Xiao H, Shen J, Luo Q, Li J. Neuroprotective effects of tanshinone IIA and/or tetramethylpyrazine in cerebral ischemic injury in vivo and in vitro. Brain Res. 2012;1488:81–91.CrossRefPubMed Tang Q, Han R, Xiao H, Shen J, Luo Q, Li J. Neuroprotective effects of tanshinone IIA and/or tetramethylpyrazine in cerebral ischemic injury in vivo and in vitro. Brain Res. 2012;1488:81–91.CrossRefPubMed
17.
go back to reference Zhang Y, Zhang B, Xu DQ, Li WP, Xu M, Li JH, et al. Tanshinone IIA attenuates seawater aspiration-induced lung injury by inhibiting macrophage migration inhibitory factor. Biol Pharm Bull. 2011;34:1052–7.CrossRefPubMed Zhang Y, Zhang B, Xu DQ, Li WP, Xu M, Li JH, et al. Tanshinone IIA attenuates seawater aspiration-induced lung injury by inhibiting macrophage migration inhibitory factor. Biol Pharm Bull. 2011;34:1052–7.CrossRefPubMed
18.
go back to reference Ahn YM, Kim SK, Lee SH, Ahn SY, Kang SW, Chung JH, et al. Renoprotective effect of Tanshinone IIA, an active component of Salvia miltiorrhiza, on rats with chronic kidney disease. Phytother Res. 2010;24:1886–92.CrossRefPubMed Ahn YM, Kim SK, Lee SH, Ahn SY, Kang SW, Chung JH, et al. Renoprotective effect of Tanshinone IIA, an active component of Salvia miltiorrhiza, on rats with chronic kidney disease. Phytother Res. 2010;24:1886–92.CrossRefPubMed
19.
go back to reference Yin X, Yin Y, Cao FL, Chen YF, Peng Y, Hou WG, et al. Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats. PLoS One. 2012;7:e38381.CrossRefPubMedCentralPubMed Yin X, Yin Y, Cao FL, Chen YF, Peng Y, Hou WG, et al. Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats. PLoS One. 2012;7:e38381.CrossRefPubMedCentralPubMed
20.
go back to reference Sun S, Yin Y, Yin X, Cao F, Luo D, Zhang T, et al. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund’s adjuvant (CFA)-induced inflammatory pain. Brain Res Bull. 2012;88:581–8.CrossRefPubMed Sun S, Yin Y, Yin X, Cao F, Luo D, Zhang T, et al. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund’s adjuvant (CFA)-induced inflammatory pain. Brain Res Bull. 2012;88:581–8.CrossRefPubMed
21.
go back to reference Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.CrossRefPubMed Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.CrossRefPubMed
22.
go back to reference Wang W, Mei XP, Wei YY, Zhang MM, Zhang T, Xu LX, et al. Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun. 2011;25:1355–66.CrossRefPubMed Wang W, Mei XP, Wei YY, Zhang MM, Zhang T, Xu LX, et al. Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun. 2011;25:1355–66.CrossRefPubMed
23.
go back to reference Tang J, Li ZH, Ge SN, Wang W, Mei XP, Zhang T, et al. The inhibition of spinal astrocytic JAK2-STAT3 pathway activation correlates with the analgesic effects of triptolide in the rat neuropathic pain model. Evid Based Complement Alternat Med. 2012;2012:185167.PubMedCentralPubMed Tang J, Li ZH, Ge SN, Wang W, Mei XP, Zhang T, et al. The inhibition of spinal astrocytic JAK2-STAT3 pathway activation correlates with the analgesic effects of triptolide in the rat neuropathic pain model. Evid Based Complement Alternat Med. 2012;2012:185167.PubMedCentralPubMed
24.
go back to reference Hamm RJ, Pike BR, O'Dell DM, Lyeth BG, Jenkins LW. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma. 1994;11:187–96.CrossRefPubMed Hamm RJ, Pike BR, O'Dell DM, Lyeth BG, Jenkins LW. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma. 1994;11:187–96.CrossRefPubMed
25.
go back to reference Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.CrossRefPubMed Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.CrossRefPubMed
26.
go back to reference Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Adv Drug Deliv Rev. 2003;55:949–65.CrossRefPubMed Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Adv Drug Deliv Rev. 2003;55:949–65.CrossRefPubMed
27.
go back to reference Guan Y, Johanek LM, Hartke TV, Shim B, Tao YX, Ringkamp M, et al. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain. 2008;138:318–29.CrossRefPubMedCentralPubMed Guan Y, Johanek LM, Hartke TV, Shim B, Tao YX, Ringkamp M, et al. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain. 2008;138:318–29.CrossRefPubMedCentralPubMed
28.
go back to reference Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 - September 2012). Expert Opin Ther Pat. 2013;23:19–29.CrossRefPubMed Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 - September 2012). Expert Opin Ther Pat. 2013;23:19–29.CrossRefPubMed
29.
go back to reference Chen Y, Wu X, Yu S, Lin X, Wu J, Li L, et al. Neuroprotection of tanshinone IIA against cerebral ischemia/reperfusion injury through inhibition of macrophage migration inhibitory factor in rats. PLoS One. 2012;7:e40165.CrossRefPubMedCentralPubMed Chen Y, Wu X, Yu S, Lin X, Wu J, Li L, et al. Neuroprotection of tanshinone IIA against cerebral ischemia/reperfusion injury through inhibition of macrophage migration inhibitory factor in rats. PLoS One. 2012;7:e40165.CrossRefPubMedCentralPubMed
30.
go back to reference Dong X, Dong J, Zhang R, Fan L, Liu L, Wu G. Anti-inflammatory effects of tanshinone IIA on radiation-induced microglia BV-2 cells inflammatory response. Cancer Biother Radiopharm. 2009;24:681–7.CrossRefPubMed Dong X, Dong J, Zhang R, Fan L, Liu L, Wu G. Anti-inflammatory effects of tanshinone IIA on radiation-induced microglia BV-2 cells inflammatory response. Cancer Biother Radiopharm. 2009;24:681–7.CrossRefPubMed
32.
go back to reference Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem. 2006;97:772–83.CrossRefPubMed Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem. 2006;97:772–83.CrossRefPubMed
33.
go back to reference Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci. 2006;26:3551–60.CrossRefPubMed Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci. 2006;26:3551–60.CrossRefPubMed
34.
go back to reference Wang W, Mei X, Huang J, Wei Y, Wang Y, Wu S, et al. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS One. 2009;4:e6973.CrossRefPubMedCentralPubMed Wang W, Mei X, Huang J, Wei Y, Wang Y, Wu S, et al. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS One. 2009;4:e6973.CrossRefPubMedCentralPubMed
36.
go back to reference Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002;99:175–84.CrossRefPubMed Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002;99:175–84.CrossRefPubMed
37.
go back to reference Migheli A, Piva R, Atzori C, Troost D, Schiffer D. c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1997;56:1314–22.CrossRefPubMed Migheli A, Piva R, Atzori C, Troost D, Schiffer D. c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1997;56:1314–22.CrossRefPubMed
38.
go back to reference Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci. 2004;24:10211–22.CrossRefPubMed Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci. 2004;24:10211–22.CrossRefPubMed
39.
go back to reference Zhang J, Wang J, Jiang JY, Liu SD, Fu K, Liu HY. Tanshinone IIA induces cytochrome c-mediated caspase cascade apoptosis in A549 human lung cancer cells via the JNK pathway. Int J Oncol. 2014;45:683–90.PubMed Zhang J, Wang J, Jiang JY, Liu SD, Fu K, Liu HY. Tanshinone IIA induces cytochrome c-mediated caspase cascade apoptosis in A549 human lung cancer cells via the JNK pathway. Int J Oncol. 2014;45:683–90.PubMed
40.
go back to reference Yun SM, Jeong SJ, Kim JH, Jung JH, Lee HJ, Sohn EJ, et al. Activation of c-Jun N-terminal kinase mediates tanshinone IIA-induced apoptosis in KBM-5 chronic myeloid leukemia cells. Biol Pharm Bull. 2013;36:208–14.CrossRefPubMed Yun SM, Jeong SJ, Kim JH, Jung JH, Lee HJ, Sohn EJ, et al. Activation of c-Jun N-terminal kinase mediates tanshinone IIA-induced apoptosis in KBM-5 chronic myeloid leukemia cells. Biol Pharm Bull. 2013;36:208–14.CrossRefPubMed
41.
go back to reference Liu SC, Hsu CJ, Chen HT, Tsou HK, Chuang SM, Tang CH. CTGF increases IL-6 expression in human synovial fibroblasts through integrin-dependent signaling pathway. PLoS One. 2012;7:e51097.CrossRefPubMedCentralPubMed Liu SC, Hsu CJ, Chen HT, Tsou HK, Chuang SM, Tang CH. CTGF increases IL-6 expression in human synovial fibroblasts through integrin-dependent signaling pathway. PLoS One. 2012;7:e51097.CrossRefPubMedCentralPubMed
43.
go back to reference Zhang ZJ, Cao DL, Zhang X, Ji RR, Gao YJ. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain. 2013;154:2185–97.CrossRefPubMedCentralPubMed Zhang ZJ, Cao DL, Zhang X, Ji RR, Gao YJ. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain. 2013;154:2185–97.CrossRefPubMedCentralPubMed
44.
go back to reference Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol. 2012;12:55–61.CrossRefPubMed Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol. 2012;12:55–61.CrossRefPubMed
45.
go back to reference Zheng JC, Huang Y, Tang K, Cui M, Niemann D, Lopez A, et al. HIV-1-infected and/or immune-activated macrophages regulate astrocyte CXCL8 production through IL-1beta and TNF-alpha: involvement of mitogen-activated protein kinases and protein kinase R. J Neuroimmunol. 2008;200:100–10.CrossRefPubMedCentralPubMed Zheng JC, Huang Y, Tang K, Cui M, Niemann D, Lopez A, et al. HIV-1-infected and/or immune-activated macrophages regulate astrocyte CXCL8 production through IL-1beta and TNF-alpha: involvement of mitogen-activated protein kinases and protein kinase R. J Neuroimmunol. 2008;200:100–10.CrossRefPubMedCentralPubMed
46.
go back to reference Tawfik VL, Lacroix-Fralish ML, Bercury KK, Nutile-McMenemy N, Harris BT, Deleo JA. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia. 2006;54:193–203.CrossRefPubMed Tawfik VL, Lacroix-Fralish ML, Bercury KK, Nutile-McMenemy N, Harris BT, Deleo JA. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia. 2006;54:193–203.CrossRefPubMed
47.
go back to reference Menetski J, Mistry S, Lu M, Mudgett JS, Ransohoff RM, Demartino JA, et al. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience. 2007;149:706–14.CrossRefPubMed Menetski J, Mistry S, Lu M, Mudgett JS, Ransohoff RM, Demartino JA, et al. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience. 2007;149:706–14.CrossRefPubMed
Metadata
Title
Inhibition of the spinal astrocytic JNK/MCP-1 pathway activation correlates with the analgesic effects of tanshinone IIA sulfonate in neuropathic pain
Authors
Jun Tang
Chao Zhu
Zhi-hong Li
Xiao-yu Liu
Shu-kai Sun
Ting Zhang
Zhuo-jing Luo
Hui Zhang
Wei-yan Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0279-7

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue