Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2021

Open Access 01-12-2021 | Research article

Beetroot juice — a suitable post-marathon metabolic recovery supplement?

Authors: Zinandré Stander, Laneke Luies, Mari van Reenen, Glyn Howatson, Karen M. Keane, Tom Clifford, Emma J. Stevenson, Du Toit Loots

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2021

Login to get access

Abstract

Background

Red beetroot (Beta vulgaris L.) is a multifunctional functional food that reportedly exhibits potent anti-inflammatory, antioxidant, vasodilation, and cellular regulatory properties. This vegetable has gained a fair amount of scientific attention as a possible cost-effective supplement to enhance performance and expedite recovery after physical exercise. To date, no study has investigated the effects of incremental beetroot juice ingestion on the metabolic recovery of athletes after an endurance race. Considering this, as well as the beneficial glucose and insulin regulatory roles of beetroot, this study investigated the effects of beetroot juice supplementation on the metabolic recovery trend of athletes within 48 h after completing a marathon.

Methods

By employing an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry approach, serum samples (collected pre-, post-, 24 h post-, and 48 h post-marathon) of 31 marathon athletes that ingested a series (n = 7; 250 ml) of either beetroot juice (n = 15 athletes) or isocaloric placebo (n = 16 athletes) supplements within 48 h post-marathon, were analysed and statistically compared.

Results

The metabolic profiles of the beetroot-ingesting cohort recovered to a pre-marathon-related state within 48 h post-marathon, mimicking the metabolic recovery trend observed in the placebo cohort. Since random inter-individual variation was observed immediately post-marathon, only metabolites with large practical significance (p-value ≤0.05 and d-value ≥0.5) within 24 h and 48 h post-marathon were considered representative of the effects of beetroot juice on metabolic recovery. These (n = 4) mainly included carbohydrates (arabitol and xylose) and odd-chain fatty acids (nonanoate and undecanoate). The majority of these were attributed to beetroot content and possible microbial fermentation thereof.

Conclusion

Apart from the global metabolic recovery trends of the two opposing cohorts, it appears that beetroot ingestion did not expedite metabolic recovery in athletes within 48 h post-marathon.
Appendix
Available only for authorised users
Literature
4.
go back to reference Stander Z, Luies L, Mienie LJ, Keane KM, Howatson G, Clifford T, et al. The altered human serum metabolome induced by a marathon. Metabolomics. 2018;14(150):1–11. Stander Z, Luies L, Mienie LJ, Keane KM, Howatson G, Clifford T, et al. The altered human serum metabolome induced by a marathon. Metabolomics. 2018;14(150):1–11.
5.
go back to reference Schader JF, Haid M, Cecil A, Schoenfeld J, Halle M, Pfeufer A, et al. Metabolite shifts induced by marathon race competition differ between athletes based on level of fitness and performance: A substudy of the Enzy-MagIC Study. Metabolites. 2020;10(3). Schader JF, Haid M, Cecil A, Schoenfeld J, Halle M, Pfeufer A, et al. Metabolite shifts induced by marathon race competition differ between athletes based on level of fitness and performance: A substudy of the Enzy-MagIC Study. Metabolites. 2020;10(3).
6.
7.
go back to reference Li M, Wu Y, Huang G, Chen S, Li S, Cao J, et al. Amino acids changes and muscle damage during the 400 km Ultra Trail Gobi Race. bioRXiv. 2018. Li M, Wu Y, Huang G, Chen S, Li S, Cao J, et al. Amino acids changes and muscle damage during the 400 km Ultra Trail Gobi Race. bioRXiv. 2018.
8.
go back to reference Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, Souza A, Cheng S, McCabe EL, Yang E, Shi X, Deo R, Roth FP, Asnani A, Rhee EP, Systrom DM, Semigran MJ, Vasan RS, Carr SA, Wang TJ, Sabatine MS, Clish CB, Gerszten RE. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2(33):33–7, https://doi.org/10.1126/scitranslmed.3001006. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, Souza A, Cheng S, McCabe EL, Yang E, Shi X, Deo R, Roth FP, Asnani A, Rhee EP, Systrom DM, Semigran MJ, Vasan RS, Carr SA, Wang TJ, Sabatine MS, Clish CB, Gerszten RE. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2(33):33–7, https://​doi.​org/​10.​1126/​scitranslmed.​3001006.
10.
go back to reference Howe CCF, Alshehri A, Muggeridge D, Mullen AB, Boyd M, Spendiff O, et al. Untargeted metabolomics profiling of an 80.5 km simulated treadmill ultramarathon. Metabolites. 2018;8(14):1–17. Howe CCF, Alshehri A, Muggeridge D, Mullen AB, Boyd M, Spendiff O, et al. Untargeted metabolomics profiling of an 80.5 km simulated treadmill ultramarathon. Metabolites. 2018;8(14):1–17.
13.
16.
go back to reference Tarabella A, Varese E, Buffagni S. Functional Foods. Food Products Evolution: Innovation Drivers and Market Trends. SpringerBriefs in Food, Health, and Nutrition. 2019;117–42. Tarabella A, Varese E, Buffagni S. Functional Foods. Food Products Evolution: Innovation Drivers and Market Trends. SpringerBriefs in Food, Health, and Nutrition. 2019;117–42.
21.
go back to reference Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, et al. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab. 2017;42(3):263–70. https://doi.org/10.1139/apnm-2016-0525. Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, et al. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab. 2017;42(3):263–70. https://​doi.​org/​10.​1139/​apnm-2016-0525.
22.
go back to reference Clifford T, Bowman A, Capper T, Allerton DM, Foster E, Birch-Machin M, et al. A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant-rich beetroot juice. Appl Physiol Nutr Metab. 201;10:1–4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29125915. Clifford T, Bowman A, Capper T, Allerton DM, Foster E, Birch-Machin M, et al. A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant-rich beetroot juice. Appl Physiol Nutr Metab. 201;10:1–4. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29125915.
26.
go back to reference Hurst RD, Lyall KA, Roberts JM, Perthaner A, Wells RW, Cooney JM, et al. Consumption of an anthocyanin-rich extract made from New Zealand blackcurrants prior to exercise may assist recovery from oxidative stress and maintains circulating neutrophil function: a pilot study. Front Nutr. 2019;6:73. https://doi.org/10.3389/fnut.2019.00073. Hurst RD, Lyall KA, Roberts JM, Perthaner A, Wells RW, Cooney JM, et al. Consumption of an anthocyanin-rich extract made from New Zealand blackcurrants prior to exercise may assist recovery from oxidative stress and maintains circulating neutrophil function: a pilot study. Front Nutr. 2019;6:73. https://​doi.​org/​10.​3389/​fnut.​2019.​00073.
27.
go back to reference Wootton-Beard PC, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res Int. 2011;44(1):217–24. https://doi.org/10.1016/j.foodres.2010.10.033. Wootton-Beard PC, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res Int. 2011;44(1):217–24. https://​doi.​org/​10.​1016/​j.​foodres.​2010.​10.​033.
31.
32.
go back to reference MATLAB. MATLAB and statistics toolbox 2012b ed. Natick, USA: The MathWorks Inc.; 2012. MATLAB. MATLAB and statistics toolbox 2012b ed. Natick, USA: The MathWorks Inc.; 2012.
33.
go back to reference Research E. PLS_Toolbox 8.2.1. 8.2.1 ed. Manson, USA: Eigenvector Reserch Inc.; 2016. Research E. PLS_Toolbox 8.2.1. 8.2.1 ed. Manson, USA: Eigenvector Reserch Inc.; 2016.
35.
go back to reference Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab (Lond). 2020;17:3.CrossRef Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab (Lond). 2020;17:3.CrossRef
36.
go back to reference Nieman DC, Shanely RA, Luo B, Meaney MP, Dew DA, Pappan KL. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling. Am J Physiol Regul Integr Comp Physiol. 2014;307(1):R68–74. https://doi.org/10.1152/ajpregu.00092.2014. Nieman DC, Shanely RA, Luo B, Meaney MP, Dew DA, Pappan KL. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling. Am J Physiol Regul Integr Comp Physiol. 2014;307(1):R68–74. https://​doi.​org/​10.​1152/​ajpregu.​00092.​2014.
37.
go back to reference Betteridge S, Bescos R, Martorell M, Pons A, Garnham AP, Stathis CC, et al. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J Appl Physiol. 2016;120(4):391–8.CrossRef Betteridge S, Bescos R, Martorell M, Pons A, Garnham AP, Stathis CC, et al. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J Appl Physiol. 2016;120(4):391–8.CrossRef
39.
go back to reference Kumdam H, Murthy SN, Gummadi SN. Arabitol production by microbial fermentation - biosynthesis and future applications. Int J Sci Appl Res. 2014;1(1):1–12. Kumdam H, Murthy SN, Gummadi SN. Arabitol production by microbial fermentation - biosynthesis and future applications. Int J Sci Appl Res. 2014;1(1):1–12.
43.
go back to reference Puigserver P. Signaling Transduction and Metabolomics. Hematology. 2018. p. 68–78. Puigserver P. Signaling Transduction and Metabolomics. Hematology. 2018. p. 68–78.
47.
go back to reference Baiao DDS, Silva D, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel). 2020;9(10):960.CrossRef Baiao DDS, Silva D, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel). 2020;9(10):960.CrossRef
48.
go back to reference Brglez Mojzer E, Knez Hrncic M, Skerget M, Knez Z, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016;21(7):901.CrossRef Brglez Mojzer E, Knez Hrncic M, Skerget M, Knez Z, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016;21(7):901.CrossRef
Metadata
Title
Beetroot juice — a suitable post-marathon metabolic recovery supplement?
Authors
Zinandré Stander
Laneke Luies
Mari van Reenen
Glyn Howatson
Karen M. Keane
Tom Clifford
Emma J. Stevenson
Du Toit Loots
Publication date
01-12-2021
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-021-00468-8

Other articles of this Issue 1/2021

Journal of the International Society of Sports Nutrition 1/2021 Go to the issue