Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2014

Open Access 01-12-2014 | Research article

Body composition changes associated with fasted versus non-fasted aerobic exercise

Authors: Brad Jon Schoenfeld, Alan Albert Aragon, Colin D Wilborn, James W Krieger, Gul T Sonmez

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2014

Login to get access

Abstract

It has been hypothesized that performing aerobic exercise after an overnight fast accelerates the loss of body fat. The purpose of this study was to investigate changes in fat mass and fat-free mass following four weeks of volume-equated fasted versus fed aerobic exercise in young women adhering to a hypocaloric diet. Twenty healthy young female volunteers were randomly assigned to 1 of 2 experimental groups: a fasted training (FASTED) group that performed exercise after an overnight fast (n = 10) or a post-prandial training (FED) group that consumed a meal prior to exercise (n = 10). Training consisted of 1 hour of steady-state aerobic exercise performed 3 days per week. Subjects were provided with customized dietary plans designed to induce a caloric deficit. Nutritional counseling was provided throughout the study period to help ensure dietary adherence and self-reported food intake was monitored on a regular basis. A meal replacement shake was provided either immediately prior to exercise for the FED group or immediately following exercise for the FASTED group, with this nutritional provision carried out under the supervision of a research assistant. Both groups showed a significant loss of weight (P = 0.0005) and fat mass (P = 0.02) from baseline, but no significant between-group differences were noted in any outcome measure. These findings indicate that body composition changes associated with aerobic exercise in conjunction with a hypocaloric diet are similar regardless whether or not an individual is fasted prior to training.
Appendix
Available only for authorised users
Literature
1.
go back to reference Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK: American college of sports medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009, 41 (2): 459-471. 10.1249/MSS.0b013e3181949333.CrossRefPubMed Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK: American college of sports medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009, 41 (2): 459-471. 10.1249/MSS.0b013e3181949333.CrossRefPubMed
2.
go back to reference Wu T, Gao X, Chen M, van Dam RM: Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis. Obes Rev. 2009, 10 (3): 313-323. 10.1111/j.1467-789X.2008.00547.x.CrossRefPubMed Wu T, Gao X, Chen M, van Dam RM: Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis. Obes Rev. 2009, 10 (3): 313-323. 10.1111/j.1467-789X.2008.00547.x.CrossRefPubMed
3.
go back to reference Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR: Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012, 95 (4): 989-994. 10.3945/ajcn.112.036350.PubMedCentralCrossRefPubMed Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR: Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012, 95 (4): 989-994. 10.3945/ajcn.112.036350.PubMedCentralCrossRefPubMed
4.
go back to reference Laye MJ, Thyfault JP, Stump CS, Booth FW: Inactivity induces increases in abdominal fat. J Appl Physiol. 2007, 102 (4): 1341-1347. 10.1152/japplphysiol.01018.2006.CrossRefPubMed Laye MJ, Thyfault JP, Stump CS, Booth FW: Inactivity induces increases in abdominal fat. J Appl Physiol. 2007, 102 (4): 1341-1347. 10.1152/japplphysiol.01018.2006.CrossRefPubMed
5.
go back to reference Hunter GR, Brock DW, Byrne NM, Chandler-Laney PC, Del Corral P, Gower BA: Exercise training prevents regain of visceral fat for 1 year following weight loss. Obesity (Silver Spring). 2010, 18 (4): 690-695. 10.1038/oby.2009.316.CrossRef Hunter GR, Brock DW, Byrne NM, Chandler-Laney PC, Del Corral P, Gower BA: Exercise training prevents regain of visceral fat for 1 year following weight loss. Obesity (Silver Spring). 2010, 18 (4): 690-695. 10.1038/oby.2009.316.CrossRef
6.
go back to reference Calabro P, Yeh ET: Intra-abdominal adiposity, inflammation, and cardiovascular risk: new insight into global cardiometabolic risk. Curr Hypertens Rep. 2008, 10 (1): 32-38. 10.1007/s11906-008-0008-z.CrossRefPubMed Calabro P, Yeh ET: Intra-abdominal adiposity, inflammation, and cardiovascular risk: new insight into global cardiometabolic risk. Curr Hypertens Rep. 2008, 10 (1): 32-38. 10.1007/s11906-008-0008-z.CrossRefPubMed
7.
go back to reference Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ: Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring). 2013, 21 (11): 2249-2255. 10.1002/oby.20379.CrossRef Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ: Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring). 2013, 21 (11): 2249-2255. 10.1002/oby.20379.CrossRef
8.
go back to reference Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P: Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol. 2011, 110 (1): 236-245. 10.1152/japplphysiol.00907.2010.PubMedCentralCrossRefPubMed Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P: Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol. 2011, 110 (1): 236-245. 10.1152/japplphysiol.00907.2010.PubMedCentralCrossRefPubMed
9.
go back to reference Kang J, Raines E, Rosenberg J, Ratamess N, Naclerio F, Faigenbaum A: Metabolic responses during postprandial exercise. Res Sports Med. 2013, 21 (3): 240-252.PubMed Kang J, Raines E, Rosenberg J, Ratamess N, Naclerio F, Faigenbaum A: Metabolic responses during postprandial exercise. Res Sports Med. 2013, 21 (3): 240-252.PubMed
10.
go back to reference Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF: Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol. 1997, 273 (4 Pt 1): E768-E775.PubMed Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF: Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol. 1997, 273 (4 Pt 1): E768-E775.PubMed
11.
go back to reference Ahlborg G, Felig P: Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J Appl Physiol. 1976, 41 (5 Pt. 1): 683-688.PubMed Ahlborg G, Felig P: Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J Appl Physiol. 1976, 41 (5 Pt. 1): 683-688.PubMed
12.
go back to reference Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P: Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab. 2005, 289 (6): E1023-E1029. 10.1152/ajpendo.00193.2005.CrossRefPubMed Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P: Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab. 2005, 289 (6): E1023-E1029. 10.1152/ajpendo.00193.2005.CrossRefPubMed
13.
go back to reference Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH: Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol. 1997, 273 (2 Pt 1): E268-E275.PubMed Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH: Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol. 1997, 273 (2 Pt 1): E268-E275.PubMed
14.
go back to reference Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF: Substrate metabolism when subjects are fed carbohydrate during exercise. Am J Physiol. 1999, 276 (5 Pt 1): E828-E835.PubMed Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF: Substrate metabolism when subjects are fed carbohydrate during exercise. Am J Physiol. 1999, 276 (5 Pt 1): E828-E835.PubMed
15.
go back to reference De Bock K, Derave W, Eijnde BO, Hesselink MK, Koninckx E, Rose AJ, Schrauwen P, Bonen A, Richter EA, Hespel P: Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol. 2008, 104 (4): 1045-1055. 10.1152/japplphysiol.01195.2007.CrossRefPubMed De Bock K, Derave W, Eijnde BO, Hesselink MK, Koninckx E, Rose AJ, Schrauwen P, Bonen A, Richter EA, Hespel P: Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol. 2008, 104 (4): 1045-1055. 10.1152/japplphysiol.01195.2007.CrossRefPubMed
16.
go back to reference Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M, Van Veldhoven PP, Hespel P: Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol. 2010, 588 (Pt 21): 4289-4302. 10.1113/jphysiol.2010.196493.PubMedCentralCrossRefPubMed Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M, Van Veldhoven PP, Hespel P: Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol. 2010, 588 (Pt 21): 4289-4302. 10.1113/jphysiol.2010.196493.PubMedCentralCrossRefPubMed
17.
go back to reference Arciero PJ, Ormsbee MJ, Gentile CL, Nindl BC, Brestoff JR, Ruby M: Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity (Silver Spring). 2013, 21 (7): 1357-1366. 10.1002/oby.20296.CrossRef Arciero PJ, Ormsbee MJ, Gentile CL, Nindl BC, Brestoff JR, Ruby M: Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity (Silver Spring). 2013, 21 (7): 1357-1366. 10.1002/oby.20296.CrossRef
18.
go back to reference ACSM s Guidelines for Exercise Testing and Prescription. 2009, Lippincott Williams & Wilkins, Baltimore, MD ACSM s Guidelines for Exercise Testing and Prescription. 2009, Lippincott Williams & Wilkins, Baltimore, MD
19.
go back to reference Schoenfeld B: Does cardio after an overnight fast maximize fat loss?. Strength Cond J. 2011, 33 (1): 23-25. 10.1519/SSC.0b013e31820396ec.CrossRef Schoenfeld B: Does cardio after an overnight fast maximize fat loss?. Strength Cond J. 2011, 33 (1): 23-25. 10.1519/SSC.0b013e31820396ec.CrossRef
20.
go back to reference Frankenfield D, Roth-Yousey L, Compher C: Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005, 105 (5): 775-789. 10.1016/j.jada.2005.02.005.CrossRefPubMed Frankenfield D, Roth-Yousey L, Compher C: Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. J Am Diet Assoc. 2005, 105 (5): 775-789. 10.1016/j.jada.2005.02.005.CrossRefPubMed
21.
go back to reference Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, Astrup A: Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010, 363 (22): 2102-2113. 10.1056/NEJMoa1007137.PubMedCentralCrossRefPubMed Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, Astrup A: Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010, 363 (22): 2102-2113. 10.1056/NEJMoa1007137.PubMedCentralCrossRefPubMed
22.
go back to reference Pasiakos SM, Cao JJ, Margolis LM, Sauter ER, Whigham LD, McClung JP, Rood JC, Carbone JW, Combs GF, Young AJ: Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 2013, 27 (9): 3837-3847. 10.1096/fj.13-230227.CrossRefPubMed Pasiakos SM, Cao JJ, Margolis LM, Sauter ER, Whigham LD, McClung JP, Rood JC, Carbone JW, Combs GF, Young AJ: Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 2013, 27 (9): 3837-3847. 10.1096/fj.13-230227.CrossRefPubMed
23.
go back to reference McCrory MA, Gomez TD, Bernauer EM, Mole PA: Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc. 1995, 27 (12): 1686-1691. 10.1249/00005768-199512000-00016.CrossRefPubMed McCrory MA, Gomez TD, Bernauer EM, Mole PA: Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc. 1995, 27 (12): 1686-1691. 10.1249/00005768-199512000-00016.CrossRefPubMed
24.
go back to reference Maddalozzo GF, Cardinal BJ, Snow CA: Concurrent validity of the BOD POD and dual energy x-ray absorptiometry techniques for assessing body composition in young women. J Am Diet Assoc. 2002, 102 (11): 1677-1679. 10.1016/S0002-8223(02)90358-5.CrossRefPubMed Maddalozzo GF, Cardinal BJ, Snow CA: Concurrent validity of the BOD POD and dual energy x-ray absorptiometry techniques for assessing body composition in young women. J Am Diet Assoc. 2002, 102 (11): 1677-1679. 10.1016/S0002-8223(02)90358-5.CrossRefPubMed
25.
go back to reference Ballard TP, Fafara L, Vukovich MD: Comparison of Bod Pod and DXA in female collegiate athletes. Med Sci Sports Exerc. 2004, 36 (4): 731-735. 10.1249/01.MSS.0000121943.02489.2B.CrossRefPubMed Ballard TP, Fafara L, Vukovich MD: Comparison of Bod Pod and DXA in female collegiate athletes. Med Sci Sports Exerc. 2004, 36 (4): 731-735. 10.1249/01.MSS.0000121943.02489.2B.CrossRefPubMed
26.
go back to reference Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA: Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol. 2000, 89 (6): 2220-2226.PubMed Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA: Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol. 2000, 89 (6): 2220-2226.PubMed
27.
go back to reference Gonzalez JT, Veasey RC, Rumbold PL, Stevenson EJ: Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr. 2013, 110 (4): 721-732. 10.1017/S0007114512005582.CrossRefPubMed Gonzalez JT, Veasey RC, Rumbold PL, Stevenson EJ: Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr. 2013, 110 (4): 721-732. 10.1017/S0007114512005582.CrossRefPubMed
28.
go back to reference de Venne WP V, Westerterp KR: Influence of the feeding frequency on nutrient utilization in man: consequences for energy metabolism. Eur J Clin Nutr. 1991, 45 (3): 161-169. de Venne WP V, Westerterp KR: Influence of the feeding frequency on nutrient utilization in man: consequences for energy metabolism. Eur J Clin Nutr. 1991, 45 (3): 161-169.
29.
go back to reference Hansen K, Shriver T, Schoeller D: The effects of exercise on the storage and oxidation of dietary fat. Sports Med. 2005, 35 (5): 363-373. 10.2165/00007256-200535050-00001.CrossRefPubMed Hansen K, Shriver T, Schoeller D: The effects of exercise on the storage and oxidation of dietary fat. Sports Med. 2005, 35 (5): 363-373. 10.2165/00007256-200535050-00001.CrossRefPubMed
30.
go back to reference Paoli A, Marcolin G, Zonin F, Neri M, Sivieri A, Pacelli QF: Exercising fasting or fed to enhance fat loss? influence of food intake on respiratory ratio and excess postexercise oxygen consumption after a bout of endurance training. Int J Sport Nutr Exerc Metab. 2011, 21 (1): 48-54.PubMed Paoli A, Marcolin G, Zonin F, Neri M, Sivieri A, Pacelli QF: Exercising fasting or fed to enhance fat loss? influence of food intake on respiratory ratio and excess postexercise oxygen consumption after a bout of endurance training. Int J Sport Nutr Exerc Metab. 2011, 21 (1): 48-54.PubMed
31.
go back to reference Lee YS, Ha MS, Lee YJ: The effects of various intensities and durations of exercise with and without glucose in milk ingestion on postexercise oxygen consumption. J Sports Med Phys Fitness. 1999, 39 (4): 341-347.PubMed Lee YS, Ha MS, Lee YJ: The effects of various intensities and durations of exercise with and without glucose in milk ingestion on postexercise oxygen consumption. J Sports Med Phys Fitness. 1999, 39 (4): 341-347.PubMed
32.
go back to reference Davis JM, Sadri S, Sargent RG, Ward D: Weight control and calorie expenditure: thermogenic effects of pre-prandial and post-prandial exercise. Addict Behav. 1989, 14 (3): 347-351. 10.1016/0306-4603(89)90066-X.CrossRefPubMed Davis JM, Sadri S, Sargent RG, Ward D: Weight control and calorie expenditure: thermogenic effects of pre-prandial and post-prandial exercise. Addict Behav. 1989, 14 (3): 347-351. 10.1016/0306-4603(89)90066-X.CrossRefPubMed
33.
go back to reference Goben KW, Sforzo GA, Frye PA: Exercise intensity and the thermic effect of food. Int J Sport Nutr. 1992, 2 (1): 87-95.PubMed Goben KW, Sforzo GA, Frye PA: Exercise intensity and the thermic effect of food. Int J Sport Nutr. 1992, 2 (1): 87-95.PubMed
34.
go back to reference Mertz W, Tsui JC, Judd JT, Reiser S, Hallfrisch J, Morris ER, Steele PD, Lashley E: What are people really eating? the relation between energy intake derived from estimated diet records and intake determined to maintain body weight. Am J Clin Nutr. 1991, 54 (2): 291-295.PubMed Mertz W, Tsui JC, Judd JT, Reiser S, Hallfrisch J, Morris ER, Steele PD, Lashley E: What are people really eating? the relation between energy intake derived from estimated diet records and intake determined to maintain body weight. Am J Clin Nutr. 1991, 54 (2): 291-295.PubMed
35.
go back to reference Helms ER, Aragon AA, Fitschen PJ: Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014, 11: 20-2783-11-20-10.1186/1550-2783-11-20. eCollection 2014CrossRef Helms ER, Aragon AA, Fitschen PJ: Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014, 11: 20-2783-11-20-10.1186/1550-2783-11-20. eCollection 2014CrossRef
Metadata
Title
Body composition changes associated with fasted versus non-fasted aerobic exercise
Authors
Brad Jon Schoenfeld
Alan Albert Aragon
Colin D Wilborn
James W Krieger
Gul T Sonmez
Publication date
01-12-2014
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-014-0054-7

Other articles of this Issue 1/2014

Journal of the International Society of Sports Nutrition 1/2014 Go to the issue