Skip to main content
Top
Published in: Pediatric Rheumatology 1/2015

Open Access 01-12-2015 | Case Report

Severe immune dysregulation with neurological impairment and minor bone changes in a child with spondyloenchondrodysplasia due to two novel mutations in the ACP5 gene

Authors: Hermann Girschick, Christine Wolf, Henner Morbach, Christoph Hertzberg, Min Ae Lee-Kirsch

Published in: Pediatric Rheumatology | Issue 1/2015

Login to get access

Abstract

Spondyloenchondrodysplasia (SPENCD) is a rare skeletal dysplasia, characterized by metaphyseal lesions, neurological impairment and immune dysregulation associated with lupus-like features. SPENCD is caused by biallelic mutations in the ACP5 gene encoding tartrate-resistant phosphatase. We report on a child, who presented with spasticity, multisystem inflammation, autoimmunity and immunodeficiency with minimal metaphyseal changes due to compound heterozygosity for two novel ACP5 mutations. These findings extend the phenotypic spectrum of SPENCD and indicate that ACP5 mutations can cause severe immune dysregulation and neurological impairment even in the absence of metaphyseal dysplasia.
Literature
1.
go back to reference Schorr S, Legum C, Ochshorn M. Spondyloenchondrodysplasia. Enchondromatomosis with severe platyspondyly in two brothers. Radiology. 1976;118:133–9.CrossRefPubMed Schorr S, Legum C, Ochshorn M. Spondyloenchondrodysplasia. Enchondromatomosis with severe platyspondyly in two brothers. Radiology. 1976;118:133–9.CrossRefPubMed
2.
go back to reference Renella R, Schaefer E, LeMerrer M, Alanay Y, Kandemir N, Eich G, et al. Spondyloenchondrodysplasia with spasticity, cerebral calcifications, and immune dysregulation: clinical and radiographic delineation of a pleiotropic disorder. Am J Med Genet A. 2006;140:541–50.CrossRefPubMed Renella R, Schaefer E, LeMerrer M, Alanay Y, Kandemir N, Eich G, et al. Spondyloenchondrodysplasia with spasticity, cerebral calcifications, and immune dysregulation: clinical and radiographic delineation of a pleiotropic disorder. Am J Med Genet A. 2006;140:541–50.CrossRefPubMed
3.
go back to reference Frydman M, Bar-Ziv J, Preminger-Shapiro R, Brezner A, Brand N, Ben-Ami T, et al. Possible heterogeneity in spondyloenchondrodysplasia: quadriparesis, basal ganglia calcifications, and chondrocyte inclusions. Am J Med Genet. 1990;36:279–84.CrossRefPubMed Frydman M, Bar-Ziv J, Preminger-Shapiro R, Brezner A, Brand N, Ben-Ami T, et al. Possible heterogeneity in spondyloenchondrodysplasia: quadriparesis, basal ganglia calcifications, and chondrocyte inclusions. Am J Med Genet. 1990;36:279–84.CrossRefPubMed
4.
go back to reference Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43:127–31.CrossRefPubMed Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43:127–31.CrossRefPubMed
5.
go back to reference Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, de Laet C, et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet. 2011;43:132–7.CrossRefPubMed Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, de Laet C, et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet. 2011;43:132–7.CrossRefPubMed
6.
go back to reference Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, De JJ, et al. Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone. 2000;27:575–84.CrossRefPubMed Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, De JJ, et al. Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone. 2000;27:575–84.CrossRefPubMed
7.
go back to reference Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol. 2006;7:498–506.PubMedCentralCrossRefPubMed Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol. 2006;7:498–506.PubMedCentralCrossRefPubMed
9.
go back to reference Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–7.CrossRefPubMed Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–7.CrossRefPubMed
10.
go back to reference Gunther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M, Wolf C, et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest. 2015;125:413–24.PubMedCentralCrossRefPubMed Gunther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M, Wolf C, et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest. 2015;125:413–24.PubMedCentralCrossRefPubMed
11.
go back to reference Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91–8.CrossRefPubMed Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91–8.CrossRefPubMed
Metadata
Title
Severe immune dysregulation with neurological impairment and minor bone changes in a child with spondyloenchondrodysplasia due to two novel mutations in the ACP5 gene
Authors
Hermann Girschick
Christine Wolf
Henner Morbach
Christoph Hertzberg
Min Ae Lee-Kirsch
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2015
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-015-0035-7

Other articles of this Issue 1/2015

Pediatric Rheumatology 1/2015 Go to the issue