Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts

Authors: Mahon L. Maguire, Sairam Geethanath, Craig A. Lygate, Vikram D. Kodibagkar, Jürgen E. Schneider

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Magnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times. Compressed sensing (CS) has been successfully applied to clinical 1H MRSI, however a detailed evaluation of CS for conventional chemical shift imaging is lacking. Here we evaluate the performance of CS accelerated MRSI, and specifically apply it to accelerate 23Na-MRSI on mouse hearts in vivo at 9.4 T.

Methods

Synthetic phantom data representing a simplified section across a mouse thorax were used to evaluate the fidelity of the CS reconstruction for varying levels of under-sampling, resolution and signal-to-noise ratios (SNR). The amplitude of signals arising from within a compartment, and signal contamination arising from outside the compartment relative to noise-free Fourier-transformed (FT) data were determined. Simulation results were subsequently verified experimentally in phantoms and in three mouse hearts in vivo.

Results

CS reconstructed MRSI data are scaled linearly relative to absolute signal intensities from the fully-sampled FT reconstructed case (R2 > 0.8, p-value < 0.001). Higher acceleration factors resulted in a denoising of the reconstructed spectra, but also in an increased blurring of compartment boundaries, particularly at lower spatial resolutions. Increasing resolution and SNR decreased cross-compartment contamination and yielded signal amplitudes closer to the FT data. Proof-of-concept high-resolution, 3-fold accelerated 23Na-amplitude maps of murine myocardium could be obtained within ~23 mins.

Conclusions

Relative signal amplitudes (i.e. metabolite ratios) and absolute quantification of metabolite concentrations can be accurately determined with up to 5-fold under-sampled, CS-reconstructed MRSI. Although this work focused on murine cardiac 23Na-MRSI, the results are equally applicable to other nuclei and tissues (e.g. 1H MRSI in brain). Significant reduction in MRSI scan time will reduce the burden on the subject, increase scanner throughput, and may open new avenues for (pre-) clinical metabolic studies.
Literature
1.
2.
5.
go back to reference Jakob PM, Kober F, Pohmann R, Haase A. Single-shot spectroscopic imaging (SISSI) using a PEEP/BURST hybrid. J Magn Reson B. 1996;110(3):278–83.PubMedCrossRef Jakob PM, Kober F, Pohmann R, Haase A. Single-shot spectroscopic imaging (SISSI) using a PEEP/BURST hybrid. J Magn Reson B. 1996;110(3):278–83.PubMedCrossRef
6.
go back to reference Jakob PM, Ziegler A, Doran SJ, Decorps M. Echo-time-encoded burst imaging (EBI): a novel technique for spectroscopic imaging. Magn Reson Med. 1995;33(4):573–8.PubMedCrossRef Jakob PM, Ziegler A, Doran SJ, Decorps M. Echo-time-encoded burst imaging (EBI): a novel technique for spectroscopic imaging. Magn Reson Med. 1995;33(4):573–8.PubMedCrossRef
7.
go back to reference Furuyama JK, Wilson NE, Burns BL, Nagarajan R, Margolis DJ, Thomas MA. Application of compressed sensing to multidimensional spectroscopic imaging in human prostate. Magn Reson Med. 2012;67(6):1499–505. doi:10.1002/mrm.24265.PubMedCrossRef Furuyama JK, Wilson NE, Burns BL, Nagarajan R, Margolis DJ, Thomas MA. Application of compressed sensing to multidimensional spectroscopic imaging in human prostate. Magn Reson Med. 2012;67(6):1499–505. doi:10.1002/mrm.24265.PubMedCrossRef
8.
go back to reference Sarma MK, Nagarajan R, Macey PM, Kumar R, Villablanca JP, Furuyama J, et al. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea. AJNR Am J Neuroradiol. 2014;35(6 Suppl):S81–9. doi:10.3174/ajnr.A3846.PubMedCentralPubMedCrossRef Sarma MK, Nagarajan R, Macey PM, Kumar R, Villablanca JP, Furuyama J, et al. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea. AJNR Am J Neuroradiol. 2014;35(6 Suppl):S81–9. doi:10.3174/ajnr.A3846.PubMedCentralPubMedCrossRef
9.
go back to reference Lustig M, Donoho D, Sparse PJM, MRI. The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95. doi:10.1002/mrm.21391.PubMedCrossRef Lustig M, Donoho D, Sparse PJM, MRI. The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95. doi:10.1002/mrm.21391.PubMedCrossRef
10.
go back to reference Cao P, Wu EX. Accelerating phase-encoded proton MR spectroscopic imaging by compressed sensing. J Magn Reson Imaging. 2014. doi:10.1002/jmri.24553. Cao P, Wu EX. Accelerating phase-encoded proton MR spectroscopic imaging by compressed sensing. J Magn Reson Imaging. 2014. doi:10.1002/jmri.24553.
11.
go back to reference Geethanath S, Baek HM, Ganji SK, Ding Y, Maher EA, Sims RD, et al. Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology. 2012;262(3):985–94. doi:10.1148/radiol.11111098.PubMedCentralPubMedCrossRef Geethanath S, Baek HM, Ganji SK, Ding Y, Maher EA, Sims RD, et al. Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology. 2012;262(3):985–94. doi:10.1148/radiol.11111098.PubMedCentralPubMedCrossRef
12.
go back to reference Hu S, Lustig M, Balakrishnan A, Larson PE, Bok R, Kurhanewicz J, et al. 3D compressed sensing for highly accelerated hyperpolarized (13)C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med. 2010;63(2):312–21. doi:10.1002/mrm.22233.PubMedCentralPubMedCrossRef Hu S, Lustig M, Balakrishnan A, Larson PE, Bok R, Kurhanewicz J, et al. 3D compressed sensing for highly accelerated hyperpolarized (13)C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med. 2010;63(2):312–21. doi:10.1002/mrm.22233.PubMedCentralPubMedCrossRef
13.
go back to reference Hu S, Lustig M, Chen AP, Crane J, Kerr A, Kelley DA, et al. Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. J Magn Reson. 2008;192(2):258–64. doi:10.1016/j.jmr.2008.03.003.PubMedCentralPubMedCrossRef Hu S, Lustig M, Chen AP, Crane J, Kerr A, Kelley DA, et al. Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. J Magn Reson. 2008;192(2):258–64. doi:10.1016/j.jmr.2008.03.003.PubMedCentralPubMedCrossRef
14.
go back to reference Larson PE, Hu S, Lustig M, Kerr AB, Nelson SJ, Kurhanewicz J, et al. Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn Reson Med. 2011;65(3):610–9. doi:10.1002/mrm.22650.PubMedCentralPubMedCrossRef Larson PE, Hu S, Lustig M, Kerr AB, Nelson SJ, Kurhanewicz J, et al. Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn Reson Med. 2011;65(3):610–9. doi:10.1002/mrm.22650.PubMedCentralPubMedCrossRef
15.
go back to reference Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7 T: preliminary study. J Magn Reson. 2012;214(1):360–5. doi:10.1016/j.jmr.2011.12.005.PubMedCentralPubMedCrossRef Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7 T: preliminary study. J Magn Reson. 2012;214(1):360–5. doi:10.1016/j.jmr.2011.12.005.PubMedCentralPubMedCrossRef
16.
go back to reference Askin NC, Atis B, Ozturk-Isik E. Accelerated phosphorus magnetic resonance spectroscopic imaging using compressed sensing. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1106–9. doi:10.1109/EMBC.2012.6346128.PubMed Askin NC, Atis B, Ozturk-Isik E. Accelerated phosphorus magnetic resonance spectroscopic imaging using compressed sensing. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1106–9. doi:10.1109/EMBC.2012.6346128.PubMed
17.
go back to reference Bostock MJ, Holland DJ, Nietlispach D. Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins. J Biomol NMR. 2012;54(1):15–32. doi:10.1007/s10858-012-9643-4.PubMedCrossRef Bostock MJ, Holland DJ, Nietlispach D. Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins. J Biomol NMR. 2012;54(1):15–32. doi:10.1007/s10858-012-9643-4.PubMedCrossRef
18.
go back to reference Kazimierczuk K, Orekhov VY. A comparison of convex and non-convex compressed sensing applied to multidimensional NMR. J Magn Reson. 2012;223:1–10. doi:10.1016/j.jmr.2012.08.001.PubMedCrossRef Kazimierczuk K, Orekhov VY. A comparison of convex and non-convex compressed sensing applied to multidimensional NMR. J Magn Reson. 2012;223:1–10. doi:10.1016/j.jmr.2012.08.001.PubMedCrossRef
19.
go back to reference Heikal AA, Wachowicz K, Fallone BG. MTF behavior of compressed sensing MR spectroscopic imaging. Med Phys. 2013;40(5):052302. doi:10.1118/1.4800642.PubMedCrossRef Heikal AA, Wachowicz K, Fallone BG. MTF behavior of compressed sensing MR spectroscopic imaging. Med Phys. 2013;40(5):052302. doi:10.1118/1.4800642.PubMedCrossRef
20.
go back to reference Barker PB, Ernst TM. Acceleration of 1H MR metabolic imaging with compressed sensing. Radiology. 2013;266(2):686. doi:10.1148/radiol.12121692.PubMedCrossRef Barker PB, Ernst TM. Acceleration of 1H MR metabolic imaging with compressed sensing. Radiology. 2013;266(2):686. doi:10.1148/radiol.12121692.PubMedCrossRef
21.
go back to reference Geethanath S, Kodibagkar VD. Response Radiology. 2013;266(2):686–7. Geethanath S, Kodibagkar VD. Response Radiology. 2013;266(2):686–7.
22.
go back to reference Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K. Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging. 2004;19(2):229–37.PubMedCrossRef Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K. Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging. 2004;19(2):229–37.PubMedCrossRef
23.
go back to reference Ouwerkerk R, Weiss RG, Bottomley PA. Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging. 2005;21(5):546–55.PubMedCrossRef Ouwerkerk R, Weiss RG, Bottomley PA. Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging. 2005;21(5):546–55.PubMedCrossRef
24.
go back to reference Kwock L, Smith JK, Castillo M, Ewend MG, Collichio F, Morris DE, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7(10):859–68. doi:10.1016/S1470-2045(06)70905-6.PubMedCrossRef Kwock L, Smith JK, Castillo M, Ewend MG, Collichio F, Morris DE, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7(10):859–68. doi:10.1016/S1470-2045(06)70905-6.PubMedCrossRef
25.
go back to reference Glunde K, Bhujwalla ZM. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol. 2011;38(1):26–41. doi:10.1053/j.seminoncol.2010.11.001.PubMedCentralPubMedCrossRef Glunde K, Bhujwalla ZM. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol. 2011;38(1):26–41. doi:10.1053/j.seminoncol.2010.11.001.PubMedCentralPubMedCrossRef
26.
go back to reference Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neurological diagnosis. Neurol Clin. 2009;27(1):21–60. doi:10.1016/j.ncl.2008.09.007. 1.PubMedCrossRef Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neurological diagnosis. Neurol Clin. 2009;27(1):21–60. doi:10.1016/j.ncl.2008.09.007. 1.PubMedCrossRef
27.
go back to reference Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG. 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA. 2004;17(3–6):196–200.PubMedCrossRef Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG. 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA. 2004;17(3–6):196–200.PubMedCrossRef
28.
go back to reference Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA. Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology. 2003;227(2):529–37. doi:10.1148/radiol.2272020483.PubMedCrossRef Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA. Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology. 2003;227(2):529–37. doi:10.1148/radiol.2272020483.PubMedCrossRef
29.
go back to reference Constantinides CD, Weiss RG, Lee R, Bolar D, Bottomley PA. Restoration of low resolution metabolic images with a priori anatomic information: 23Na MRI in myocardial infarction. Magn Reson Imaging. 2000;18(4):461–71.PubMedCrossRef Constantinides CD, Weiss RG, Lee R, Bolar D, Bottomley PA. Restoration of low resolution metabolic images with a priori anatomic information: 23Na MRI in myocardial infarction. Magn Reson Imaging. 2000;18(4):461–71.PubMedCrossRef
30.
go back to reference Wetterling F, Tabbert M, Junge S, Gallagher L, Macrae IM, Fagan AJ. A double-tuned (1)H/(23)Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI. Phys Med Biol. 2010;55(24):7681–95. doi:10.1088/0031-9155/55/24/019.PubMedCrossRef Wetterling F, Tabbert M, Junge S, Gallagher L, Macrae IM, Fagan AJ. A double-tuned (1)H/(23)Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI. Phys Med Biol. 2010;55(24):7681–95. doi:10.1088/0031-9155/55/24/019.PubMedCrossRef
31.
go back to reference Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation. 1999;100:185–92.PubMedCrossRef Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation. 1999;100:185–92.PubMedCrossRef
Metadata
Title
Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts
Authors
Mahon L. Maguire
Sairam Geethanath
Craig A. Lygate
Vikram D. Kodibagkar
Jürgen E. Schneider
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0149-6

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue