Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Review

The role of AMPK in macrophage metabolism, function and polarisation

Authors: Yinxing Cui, Junhua Chen, Zhao Zhang, Houyin Shi, Weichao Sun, Qian Yi

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

AMP-activated protein kinase (AMPK) is a ubiquitous sensor of energy and nutritional status in eukaryotic cells. It plays a key role in regulating cellular energy homeostasis and multiple aspects of cell metabolism. During macrophage polarisation, AMPK not only guides the metabolic programming of macrophages, but also counter-regulates the inflammatory function of macrophages and promotes their polarisation toward the anti-inflammatory phenotype. AMPK is located at the intersection of macrophage metabolism and inflammation. The metabolic characteristics of macrophages are closely related to immune-related diseases, infectious diseases, cancer progression and immunotherapy. This review discusses the structure of AMPK and its role in the metabolism, function and polarisation of macrophages. In addition, it summarises the important role of the AMPK pathway and AMPK activators in the development of macrophage-related diseases.
Literature
2.
5.
6.
go back to reference Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–72.PubMedCrossRef Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–72.PubMedCrossRef
9.
go back to reference Wang S, et al. Metabolic reprogramming of macrophages during Infections and cancer. Cancer Lett. 2019;452:14–22.PubMedCrossRef Wang S, et al. Metabolic reprogramming of macrophages during Infections and cancer. Cancer Lett. 2019;452:14–22.PubMedCrossRef
10.
go back to reference McArthur S, et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest. 2020;130(3):1156–67.PubMedPubMedCentralCrossRef McArthur S, et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest. 2020;130(3):1156–67.PubMedPubMedCentralCrossRef
11.
go back to reference Juban G, et al. AMPK activation regulates LTBP4-dependent TGF-beta1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep. 2018;25(8):2163–76.e6.PubMedCrossRef Juban G, et al. AMPK activation regulates LTBP4-dependent TGF-beta1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep. 2018;25(8):2163–76.e6.PubMedCrossRef
12.
go back to reference Li J, et al. Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase. Chem Biol Drug Des. 2017;89(5):663–9.PubMedCrossRef Li J, et al. Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase. Chem Biol Drug Des. 2017;89(5):663–9.PubMedCrossRef
13.
go back to reference Hardie DG. AMP-activated protein kinase—a journey from 1 to 100 downstream targets. Biochem J. 2022;479(22):2327–43.PubMedCrossRef Hardie DG. AMP-activated protein kinase—a journey from 1 to 100 downstream targets. Biochem J. 2022;479(22):2327–43.PubMedCrossRef
14.
go back to reference Dermaku-Sopjani M, Sopjani M. Intracellular signaling of the AMP-activated protein kinase. Adv Protein Chem Struct Biol. 2019;116:171–207.PubMedCrossRef Dermaku-Sopjani M, Sopjani M. Intracellular signaling of the AMP-activated protein kinase. Adv Protein Chem Struct Biol. 2019;116:171–207.PubMedCrossRef
18.
go back to reference Rajamohan F, et al. Probing the enzyme kinetics, allosteric modulation and activation of alpha1- and alpha2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J. 2016;473(5):581–92.PubMedCrossRef Rajamohan F, et al. Probing the enzyme kinetics, allosteric modulation and activation of alpha1- and alpha2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J. 2016;473(5):581–92.PubMedCrossRef
19.
go back to reference Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–51.PubMedCrossRef Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–51.PubMedCrossRef
20.
go back to reference Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35.PubMedCrossRef Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35.PubMedCrossRef
22.
go back to reference Wang Q, et al. AMPK-Mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull. 2018;41(7):985–93.PubMedCrossRef Wang Q, et al. AMPK-Mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull. 2018;41(7):985–93.PubMedCrossRef
23.
go back to reference Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016;26(3):190–201.PubMedCrossRef Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016;26(3):190–201.PubMedCrossRef
24.
go back to reference Peixoto CA, et al. AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol. 2017;298(Pt A):31–41.PubMedCrossRef Peixoto CA, et al. AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol. 2017;298(Pt A):31–41.PubMedCrossRef
25.
go back to reference Gonzalez A, et al. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–92.PubMedCrossRef Gonzalez A, et al. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–92.PubMedCrossRef
29.
go back to reference Ke R, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42(4):384–92.PubMedCrossRef Ke R, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42(4):384–92.PubMedCrossRef
31.
go back to reference Ma EH, et al. The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 2017;46:45–52.PubMedCrossRef Ma EH, et al. The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 2017;46:45–52.PubMedCrossRef
33.
go back to reference Saito M, Saito M, Das BC. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Int J Dev Neurosci. 2019;77:48–59.PubMedPubMedCentralCrossRef Saito M, Saito M, Das BC. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Int J Dev Neurosci. 2019;77:48–59.PubMedPubMedCentralCrossRef
35.
go back to reference Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.PubMedCrossRef Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.PubMedCrossRef
36.
go back to reference Pinkosky SL, et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun. 2016;7:13457.PubMedPubMedCentralCrossRef Pinkosky SL, et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun. 2016;7:13457.PubMedPubMedCentralCrossRef
37.
go back to reference Li S, et al. Ca2+-stimulated AMPK-dependent phosphorylation of Exo1 protects stressed replication forks from aberrant resection. Mol Cell. 2019;74(6):1123–37.e6.PubMedPubMedCentralCrossRef Li S, et al. Ca2+-stimulated AMPK-dependent phosphorylation of Exo1 protects stressed replication forks from aberrant resection. Mol Cell. 2019;74(6):1123–37.e6.PubMedPubMedCentralCrossRef
38.
go back to reference Vara-Ciruelos D, et al. Genotoxic damage activates the AMPK-alpha1 isoform in the nucleus via Ca2+/CaMKK2 signaling to enhance tumor cell survival. Mol Cancer Res. 2018;16(2):345–57.PubMedCrossRef Vara-Ciruelos D, et al. Genotoxic damage activates the AMPK-alpha1 isoform in the nucleus via Ca2+/CaMKK2 signaling to enhance tumor cell survival. Mol Cancer Res. 2018;16(2):345–57.PubMedCrossRef
41.
go back to reference Fouqueray P, et al. Pharmacodynamic effects of direct AMP kinase activation in humans with insulin resistance and non-alcoholic fatty liver disease: a phase 1b study. Cell Rep Med. 2021;2(12):100474.PubMedPubMedCentralCrossRef Fouqueray P, et al. Pharmacodynamic effects of direct AMP kinase activation in humans with insulin resistance and non-alcoholic fatty liver disease: a phase 1b study. Cell Rep Med. 2021;2(12):100474.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Alexander A, Walker CL. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett. 2011;585(7):952–7.PubMedCrossRef Alexander A, Walker CL. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett. 2011;585(7):952–7.PubMedCrossRef
44.
go back to reference Bonnardel J, Guilliams M. Developmental control of macrophage function. Curr Opin Immunol. 2018;50:64–74.PubMedCrossRef Bonnardel J, Guilliams M. Developmental control of macrophage function. Curr Opin Immunol. 2018;50:64–74.PubMedCrossRef
45.
go back to reference Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.PubMedCrossRef Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.PubMedCrossRef
46.
go back to reference Zhou D, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–7.PubMedCrossRef Zhou D, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–7.PubMedCrossRef
47.
go back to reference Sag D, et al. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181(12):8633–41.PubMedCrossRef Sag D, et al. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181(12):8633–41.PubMedCrossRef
48.
go back to reference Kang S, Kumanogoh A. The spectrum of macrophage activation by immunometabolism. Int Immunol. 2020;32(7):467–73.PubMedCrossRef Kang S, Kumanogoh A. The spectrum of macrophage activation by immunometabolism. Int Immunol. 2020;32(7):467–73.PubMedCrossRef
49.
go back to reference O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55.PubMedCrossRef O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55.PubMedCrossRef
50.
go back to reference Zhu L, et al. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015;34(1):82–100.PubMedCrossRef Zhu L, et al. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015;34(1):82–100.PubMedCrossRef
52.
go back to reference Wang LX, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–58.PubMedCrossRef Wang LX, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–58.PubMedCrossRef
56.
go back to reference Yang Z, et al. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: macrophage polarization. Front Pharmacol. 2022;13:999179.PubMedPubMedCentralCrossRef Yang Z, et al. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: macrophage polarization. Front Pharmacol. 2022;13:999179.PubMedPubMedCentralCrossRef
57.
go back to reference Yang Z, et al. Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 2010;285(25):19051–9.PubMedPubMedCentralCrossRef Yang Z, et al. Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 2010;285(25):19051–9.PubMedPubMedCentralCrossRef
58.
go back to reference Zhu YP, et al. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol. 2015;194(2):584–94.PubMedCrossRef Zhu YP, et al. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol. 2015;194(2):584–94.PubMedCrossRef
59.
go back to reference Yang Y, et al. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS-AMPK-mTORC1-autophagy pathway. Redox Biol. 2020;32:101501.PubMedPubMedCentralCrossRef Yang Y, et al. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS-AMPK-mTORC1-autophagy pathway. Redox Biol. 2020;32:101501.PubMedPubMedCentralCrossRef
60.
61.
go back to reference Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33(6):1135–44.PubMedCrossRef Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33(6):1135–44.PubMedCrossRef
62.
go back to reference Speirs C, et al. Linking energy sensing to suppression of JAK-STAT signalling: a potential route for repurposing AMPK activators? Pharmacol Res. 2018;128:88–100.PubMedCrossRef Speirs C, et al. Linking energy sensing to suppression of JAK-STAT signalling: a potential route for repurposing AMPK activators? Pharmacol Res. 2018;128:88–100.PubMedCrossRef
63.
go back to reference Wang Y, et al. Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK-PPARgamma pathway. Biochem Pharmacol. 2018;156:385–95.PubMedCrossRef Wang Y, et al. Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK-PPARgamma pathway. Biochem Pharmacol. 2018;156:385–95.PubMedCrossRef
64.
go back to reference Dzik J. Metabolic evolutionary roots of the macrophage immune response in amoeba-bacteria interactions: the conserved role of hypoxia-induced factor and AMP kinase. Acta Biochim Pol. 2021;68(3):457–76.PubMed Dzik J. Metabolic evolutionary roots of the macrophage immune response in amoeba-bacteria interactions: the conserved role of hypoxia-induced factor and AMP kinase. Acta Biochim Pol. 2021;68(3):457–76.PubMed
66.
go back to reference Galic S, et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest. 2011;121(12):4903–15.PubMedPubMedCentralCrossRef Galic S, et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest. 2011;121(12):4903–15.PubMedPubMedCentralCrossRef
67.
go back to reference Mounier R, et al. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013;18(2):251–64.PubMedCrossRef Mounier R, et al. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013;18(2):251–64.PubMedCrossRef
68.
go back to reference Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014;92(4):340–5.PubMedCrossRef Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014;92(4):340–5.PubMedCrossRef
69.
go back to reference Phair IR, et al. AMPK integrates metabolite and kinase-based immunometabolic control in macrophages. Mol Metab. 2023;68:101661.PubMedCrossRef Phair IR, et al. AMPK integrates metabolite and kinase-based immunometabolic control in macrophages. Mol Metab. 2023;68:101661.PubMedCrossRef
70.
go back to reference Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab. 2017;28(8):545–60.PubMedCrossRef Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab. 2017;28(8):545–60.PubMedCrossRef
71.
go back to reference Zhang Y, et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-kappaB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501–14.PubMedCrossRef Zhang Y, et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-kappaB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501–14.PubMedCrossRef
72.
go back to reference Yao F, Zhang M, Chen L. 5’-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Acta Pharm Sin B. 2016;6(1):20–5.PubMedCrossRef Yao F, Zhang M, Chen L. 5’-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Acta Pharm Sin B. 2016;6(1):20–5.PubMedCrossRef
73.
go back to reference Ma L, et al. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy. 2022;18(6):1385–400.PubMedCrossRef Ma L, et al. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy. 2022;18(6):1385–400.PubMedCrossRef
74.
go back to reference Antonioli L, et al. The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opin Ther Targets. 2016;20(2):179–91.PubMedCrossRef Antonioli L, et al. The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opin Ther Targets. 2016;20(2):179–91.PubMedCrossRef
75.
go back to reference Caratti G, et al. Macrophagic AMPKalpha1 orchestrates regenerative inflammation induced by glucocorticoids. EMBO Rep. 2023;24(2):e55363.PubMedCrossRef Caratti G, et al. Macrophagic AMPKalpha1 orchestrates regenerative inflammation induced by glucocorticoids. EMBO Rep. 2023;24(2):e55363.PubMedCrossRef
76.
go back to reference Wang J, et al. The regulation effect of AMPK in immune related diseases. Sci China Life Sci. 2018;61(5):523–33.PubMedCrossRef Wang J, et al. The regulation effect of AMPK in immune related diseases. Sci China Life Sci. 2018;61(5):523–33.PubMedCrossRef
77.
go back to reference Xu F, et al. Astragaloside IV inhibits lung cancer progression and Metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018;37(1):207.PubMedPubMedCentralCrossRef Xu F, et al. Astragaloside IV inhibits lung cancer progression and Metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018;37(1):207.PubMedPubMedCentralCrossRef
78.
go back to reference LeBlond ND, Fullerton MD. Methods to evaluate AMPK regulation of macrophage cholesterol homeostasis. Methods Mol Biol. 2018;1732:477–93.PubMedCrossRef LeBlond ND, Fullerton MD. Methods to evaluate AMPK regulation of macrophage cholesterol homeostasis. Methods Mol Biol. 2018;1732:477–93.PubMedCrossRef
80.
go back to reference Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vasc Pharmacol. 2019;112:54–71.CrossRef Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vasc Pharmacol. 2019;112:54–71.CrossRef
83.
go back to reference Yang Y, et al. TAK1-AMPK pathway in macrophages regulates hypothyroid atherosclerosis. Cardiovasc Drugs Ther. 2021;35(3):599–612.PubMedCrossRef Yang Y, et al. TAK1-AMPK pathway in macrophages regulates hypothyroid atherosclerosis. Cardiovasc Drugs Ther. 2021;35(3):599–612.PubMedCrossRef
84.
go back to reference Wang J, et al. AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice. Atherosclerosis. 2017;258:97–107.PubMedCrossRef Wang J, et al. AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice. Atherosclerosis. 2017;258:97–107.PubMedCrossRef
85.
go back to reference Zhang M, et al. AMP-activated protein kinase alpha1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem. 2017;292(19):7888–903.PubMedPubMedCentralCrossRef Zhang M, et al. AMP-activated protein kinase alpha1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem. 2017;292(19):7888–903.PubMedPubMedCentralCrossRef
86.
go back to reference Ma A, et al. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE(−/−) mice. J Lipid Res. 2017;58(8):1536–47.PubMedPubMedCentralCrossRef Ma A, et al. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE(−/−) mice. J Lipid Res. 2017;58(8):1536–47.PubMedPubMedCentralCrossRef
87.
go back to reference Cao Q, et al. Artemisinin attenuated atherosclerosis in high-fat diet-fed ApoE−/− mice by promoting macrophage autophagy through the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–32.PubMedCrossRef Cao Q, et al. Artemisinin attenuated atherosclerosis in high-fat diet-fed ApoE−/− mice by promoting macrophage autophagy through the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–32.PubMedCrossRef
88.
go back to reference Zhao Y, et al. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox-LDL-induced THP-1 monocytes. Exp Ther Med. 2022;24(4):636.PubMedPubMedCentralCrossRef Zhao Y, et al. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox-LDL-induced THP-1 monocytes. Exp Ther Med. 2022;24(4):636.PubMedPubMedCentralCrossRef
89.
go back to reference Lin XL, et al. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRalpha signaling in THP-1 macrophage-derived foam cells. DNA Cell Biol. 2015;34(9):561–72.PubMedCrossRef Lin XL, et al. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRalpha signaling in THP-1 macrophage-derived foam cells. DNA Cell Biol. 2015;34(9):561–72.PubMedCrossRef
90.
go back to reference Cai D, et al. Balasubramide derivative 3 C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging. 2021;13(8):12160–78.PubMedPubMedCentralCrossRef Cai D, et al. Balasubramide derivative 3 C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging. 2021;13(8):12160–78.PubMedPubMedCentralCrossRef
92.
go back to reference LeBlond ND, et al. Foam cell induction activates AMPK but uncouples its regulation of autophagy and lysosomal homeostasis. Int J Mol Sci. 2020;21(23):9033.PubMedPubMedCentralCrossRef LeBlond ND, et al. Foam cell induction activates AMPK but uncouples its regulation of autophagy and lysosomal homeostasis. Int J Mol Sci. 2020;21(23):9033.PubMedPubMedCentralCrossRef
93.
go back to reference LeBlond ND, et al. Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. J Lipid Res. 2020;61(12):1697–706.PubMedPubMedCentralCrossRef LeBlond ND, et al. Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. J Lipid Res. 2020;61(12):1697–706.PubMedPubMedCentralCrossRef
95.
go back to reference Ou H, et al. Role of AMPK in atherosclerosis via autophagy regulation. Sci China Life Sci. 2018;61(10):1212–21.PubMedCrossRef Ou H, et al. Role of AMPK in atherosclerosis via autophagy regulation. Sci China Life Sci. 2018;61(10):1212–21.PubMedCrossRef
96.
go back to reference Kemmerer M, et al. AMPK activates LXRalpha and ABCA1 expression in human macrophages. Int J Biochem Cell Biol. 2016;78:1–9.PubMedCrossRef Kemmerer M, et al. AMPK activates LXRalpha and ABCA1 expression in human macrophages. Int J Biochem Cell Biol. 2016;78:1–9.PubMedCrossRef
98.
go back to reference Xiong XQ, et al. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism. 2018;83:31–41.PubMedCrossRef Xiong XQ, et al. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism. 2018;83:31–41.PubMedCrossRef
99.
go back to reference Rendra E, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–53.PubMedCrossRef Rendra E, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–53.PubMedCrossRef
100.
go back to reference Hou L, et al. Dihydromyricetin ameliorates inflammation-induced insulin resistance via phospholipase C-CaMKK-AMPK signal pathway. Oxid Med Cell Longev. 2021;2021:8542809.PubMedPubMedCentralCrossRef Hou L, et al. Dihydromyricetin ameliorates inflammation-induced insulin resistance via phospholipase C-CaMKK-AMPK signal pathway. Oxid Med Cell Longev. 2021;2021:8542809.PubMedPubMedCentralCrossRef
101.
go back to reference Entezari M, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022;146:112563.PubMedCrossRef Entezari M, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022;146:112563.PubMedCrossRef
103.
105.
go back to reference Agius L, Ford BE, Chachra SS. The metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. Int J Mol Sci. 2020;21(9):3240.PubMedPubMedCentralCrossRef Agius L, Ford BE, Chachra SS. The metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. Int J Mol Sci. 2020;21(9):3240.PubMedPubMedCentralCrossRef
106.
go back to reference Luo T, et al. AMPK activation by Metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes. 2016;65(8):2295–310.PubMedPubMedCentralCrossRef Luo T, et al. AMPK activation by Metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes. 2016;65(8):2295–310.PubMedPubMedCentralCrossRef
107.
108.
go back to reference Song J, et al. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem Biophys Res Commun. 2010;393(1):89–94.PubMedCrossRef Song J, et al. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem Biophys Res Commun. 2010;393(1):89–94.PubMedCrossRef
110.
go back to reference Huangfu N, et al. Metformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake. Exp Ther Med. 2018;15(3):2485–91.PubMedPubMedCentral Huangfu N, et al. Metformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake. Exp Ther Med. 2018;15(3):2485–91.PubMedPubMedCentral
111.
go back to reference Cai H, et al. Moderate l-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance. J Biol Chem. 2022;298(4):101768.PubMedPubMedCentralCrossRef Cai H, et al. Moderate l-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance. J Biol Chem. 2022;298(4):101768.PubMedPubMedCentralCrossRef
112.
go back to reference Fullerton MD, Steinberg GR, Schertzer JD. Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol. 2013;366(2):224–34.PubMedCrossRef Fullerton MD, Steinberg GR, Schertzer JD. Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol. 2013;366(2):224–34.PubMedCrossRef
113.
go back to reference Lei Y, et al. Vaccarin ameliorates insulin resistance and steatosis by activating the AMPK signaling pathway. Eur J Pharmacol. 2019;851:13–24.PubMedCrossRef Lei Y, et al. Vaccarin ameliorates insulin resistance and steatosis by activating the AMPK signaling pathway. Eur J Pharmacol. 2019;851:13–24.PubMedCrossRef
114.
go back to reference Cheng J, et al. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta. 2016;1866(2):232–51.PubMedPubMedCentral Cheng J, et al. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta. 2016;1866(2):232–51.PubMedPubMedCentral
115.
go back to reference Ciccarese F, Zulato E, Indraccolo S. LKB1/AMPK pathway and drug response in cancer: a therapeutic perspective. Oxid Med Cell Longev. 2019;2019:8730816.PubMedPubMedCentralCrossRef Ciccarese F, Zulato E, Indraccolo S. LKB1/AMPK pathway and drug response in cancer: a therapeutic perspective. Oxid Med Cell Longev. 2019;2019:8730816.PubMedPubMedCentralCrossRef
116.
go back to reference Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9.PubMedCrossRef Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95(7):912–9.PubMedCrossRef
117.
go back to reference Penugurti V, Mishra YG, Manavathi B. AMPK: an odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer. 2022;1877(5):188785.PubMedCrossRef Penugurti V, Mishra YG, Manavathi B. AMPK: an odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer. 2022;1877(5):188785.PubMedCrossRef
118.
go back to reference Sharma A, et al. AMP-activated protein kinase: an energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res. 2023;428(1):113614.PubMedCrossRef Sharma A, et al. AMP-activated protein kinase: an energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res. 2023;428(1):113614.PubMedCrossRef
119.
go back to reference Qiu S, et al. AMPKalpha2 knockout enhances tumour inflammation through exacerbated liver injury and energy deprivation-associated AMPKalpha1 activation. J Cell Mol Med. 2019;23(3):1687–97.PubMedPubMedCentralCrossRef Qiu S, et al. AMPKalpha2 knockout enhances tumour inflammation through exacerbated liver injury and energy deprivation-associated AMPKalpha1 activation. J Cell Mol Med. 2019;23(3):1687–97.PubMedPubMedCentralCrossRef
121.
122.
go back to reference Rehman G, et al. Role of AMP-activated protein kinase in cancer therapy. Arch Pharm. 2014;347(7):457–68.CrossRef Rehman G, et al. Role of AMP-activated protein kinase in cancer therapy. Arch Pharm. 2014;347(7):457–68.CrossRef
123.
125.
127.
go back to reference Yung MMH, et al. Orchestrated action of AMPK activation and combined VEGF/PD-1 blockade with lipid metabolic tunning as multi-target therapeutics against ovarian cancers. Int J Mol Sci. 2022;23(12):6857.PubMedPubMedCentralCrossRef Yung MMH, et al. Orchestrated action of AMPK activation and combined VEGF/PD-1 blockade with lipid metabolic tunning as multi-target therapeutics against ovarian cancers. Int J Mol Sci. 2022;23(12):6857.PubMedPubMedCentralCrossRef
128.
go back to reference Keerthana CK, et al. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol. 2023;14:1114582.PubMedPubMedCentralCrossRef Keerthana CK, et al. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol. 2023;14:1114582.PubMedPubMedCentralCrossRef
129.
go back to reference Yuan Y, et al. Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci. 2022;65(2):236–79.PubMedCrossRef Yuan Y, et al. Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci. 2022;65(2):236–79.PubMedCrossRef
130.
go back to reference Zhou S, et al. Hypoxic tumor-derived exosomes induce M2 macrophage polarization via PKM2/AMPK to promote lung cancer progression. Cell Transpl. 2022;31:9636897221106998.CrossRef Zhou S, et al. Hypoxic tumor-derived exosomes induce M2 macrophage polarization via PKM2/AMPK to promote lung cancer progression. Cell Transpl. 2022;31:9636897221106998.CrossRef
131.
go back to reference Rabold K, et al. Cellular metabolism of tumor-associated macrophages—functional impact and consequences. FEBS Lett. 2017;591(19):3022–41.PubMedCrossRef Rabold K, et al. Cellular metabolism of tumor-associated macrophages—functional impact and consequences. FEBS Lett. 2017;591(19):3022–41.PubMedCrossRef
133.
134.
135.
go back to reference Kang J, et al. Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers. 2022;14(12):2881.PubMedPubMedCentralCrossRef Kang J, et al. Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers. 2022;14(12):2881.PubMedPubMedCentralCrossRef
136.
go back to reference Zhang X, et al. Astragalus membranaceus injection suppresses production of interleukin-6 by activating autophagy through the AMPK-mTOR pathway in lipopolysaccharide-stimulated macrophages. Oxid Med Cell Longev. 2020;2020:1364147.PubMedPubMedCentral Zhang X, et al. Astragalus membranaceus injection suppresses production of interleukin-6 by activating autophagy through the AMPK-mTOR pathway in lipopolysaccharide-stimulated macrophages. Oxid Med Cell Longev. 2020;2020:1364147.PubMedPubMedCentral
137.
go back to reference Liu Q, et al. Calcium-binding protein 39 overexpression promotes macrophages from ‘M1’ into ‘M2’ phenotype and improves chondrocyte damage in osteoarthritis by activating the AMP-activated protein kinase/sirtuin 1 axis. Bioengineered. 2022;13(4):9855–71.PubMedPubMedCentralCrossRef Liu Q, et al. Calcium-binding protein 39 overexpression promotes macrophages from ‘M1’ into ‘M2’ phenotype and improves chondrocyte damage in osteoarthritis by activating the AMP-activated protein kinase/sirtuin 1 axis. Bioengineered. 2022;13(4):9855–71.PubMedPubMedCentralCrossRef
138.
go back to reference Zhao Q, et al. 2-Deoxy-d-glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol. 2017;8:637.PubMedPubMedCentralCrossRef Zhao Q, et al. 2-Deoxy-d-glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol. 2017;8:637.PubMedPubMedCentralCrossRef
139.
go back to reference Pan T, et al. Beta-Hydroxyisovalerylshikonin regulates macrophage polarization via the AMPK/Nrf2 pathway and ameliorates sepsis in mice. Pharm Biol. 2022;60(1):729–42.PubMedPubMedCentralCrossRef Pan T, et al. Beta-Hydroxyisovalerylshikonin regulates macrophage polarization via the AMPK/Nrf2 pathway and ameliorates sepsis in mice. Pharm Biol. 2022;60(1):729–42.PubMedPubMedCentralCrossRef
140.
go back to reference Shan MR, et al. Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med. 2020;24(5):3139–48.PubMedPubMedCentralCrossRef Shan MR, et al. Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med. 2020;24(5):3139–48.PubMedPubMedCentralCrossRef
141.
go back to reference Yang X, et al. Promoting AMPK/SR-A1-mediated clearance of HMGB1 attenuates chemotherapy-induced peripheral neuropathy. Cell Commun Signal. 2023;21(1):99.PubMedPubMedCentralCrossRef Yang X, et al. Promoting AMPK/SR-A1-mediated clearance of HMGB1 attenuates chemotherapy-induced peripheral neuropathy. Cell Commun Signal. 2023;21(1):99.PubMedPubMedCentralCrossRef
142.
go back to reference Xu X, et al. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflamm. 2021;18(1):119.CrossRef Xu X, et al. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflamm. 2021;18(1):119.CrossRef
143.
go back to reference Zhang Y, et al. Alginate oligosaccharides ameliorate DSS-induced colitis through modulation of AMPK/NF-kappaB pathway and intestinal microbiota. Nutrients. 2022;14(14):2864.PubMedPubMedCentralCrossRef Zhang Y, et al. Alginate oligosaccharides ameliorate DSS-induced colitis through modulation of AMPK/NF-kappaB pathway and intestinal microbiota. Nutrients. 2022;14(14):2864.PubMedPubMedCentralCrossRef
144.
go back to reference Ye Q, et al. Apoptotic extracellular vesicles alleviate Pg-LPS induced inflammatory responses of macrophages via AMPK/SIRT1/NF-kappaB pathway and inhibit osteoclast formation. J Periodontol. 2022;93(11):1738–51.PubMedCrossRef Ye Q, et al. Apoptotic extracellular vesicles alleviate Pg-LPS induced inflammatory responses of macrophages via AMPK/SIRT1/NF-kappaB pathway and inhibit osteoclast formation. J Periodontol. 2022;93(11):1738–51.PubMedCrossRef
145.
go back to reference Guo H, et al. Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-kappaB/ERK signaling pathway. PLoS ONE. 2021;16(12): e0261127.PubMedPubMedCentralCrossRef Guo H, et al. Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-kappaB/ERK signaling pathway. PLoS ONE. 2021;16(12): e0261127.PubMedPubMedCentralCrossRef
146.
go back to reference Cai W, et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol. 2021;140:186–95.PubMedCrossRef Cai W, et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol. 2021;140:186–95.PubMedCrossRef
147.
go back to reference Zhang X, et al. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytother Res. 2021;35(8):4442–55.PubMedCrossRef Zhang X, et al. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytother Res. 2021;35(8):4442–55.PubMedCrossRef
148.
go back to reference Liang H, et al. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine. 2021;81:153427.PubMedCrossRef Liang H, et al. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine. 2021;81:153427.PubMedCrossRef
149.
go back to reference Pu JL, et al. Fisetin mitigates hepatic ischemia–reperfusion injury by regulating GSK3beta/AMPK/NLRP3 inflammasome pathway. Hepatobiliary Pancreat Dis Int. 2021;20(4):352–60.PubMedCrossRef Pu JL, et al. Fisetin mitigates hepatic ischemia–reperfusion injury by regulating GSK3beta/AMPK/NLRP3 inflammasome pathway. Hepatobiliary Pancreat Dis Int. 2021;20(4):352–60.PubMedCrossRef
150.
go back to reference Ma MH, et al. Repurposing nitazoxanide as a novel anti-atherosclerotic drug based on mitochondrial uncoupling mechanisms. Br J Pharmacol. 2023;180(1):62–79.PubMedCrossRef Ma MH, et al. Repurposing nitazoxanide as a novel anti-atherosclerotic drug based on mitochondrial uncoupling mechanisms. Br J Pharmacol. 2023;180(1):62–79.PubMedCrossRef
151.
go back to reference He L, et al. Galanin ameliorates liver inflammation and fibrosis in mice by activating AMPK/ACC signaling and modifying macrophage inflammatory phenotype. Front Immunol. 2023;14:1161676.PubMedPubMedCentralCrossRef He L, et al. Galanin ameliorates liver inflammation and fibrosis in mice by activating AMPK/ACC signaling and modifying macrophage inflammatory phenotype. Front Immunol. 2023;14:1161676.PubMedPubMedCentralCrossRef
152.
go back to reference Chen J, et al. Analysis of the mechanism underlying diabetic wound healing acceleration by calycosin-7-glycoside using network pharmacology and molecular docking. Phytomedicine. 2023;114:154773.PubMedCrossRef Chen J, et al. Analysis of the mechanism underlying diabetic wound healing acceleration by calycosin-7-glycoside using network pharmacology and molecular docking. Phytomedicine. 2023;114:154773.PubMedCrossRef
153.
go back to reference Chen Z, et al. Oleoylethanolamide stabilizes atherosclerotic plaque through regulating macrophage polarization via AMPK-PPARalpha pathway. Biochem Biophys Res Commun. 2020;524(2):308–16.PubMedCrossRef Chen Z, et al. Oleoylethanolamide stabilizes atherosclerotic plaque through regulating macrophage polarization via AMPK-PPARalpha pathway. Biochem Biophys Res Commun. 2020;524(2):308–16.PubMedCrossRef
154.
go back to reference Chen S, et al. BushenHuoxue decoction suppresses M1 macrophage polarization and prevents LPS induced inflammatory bone loss by activating AMPK pathway. Heliyon. 2023;9(5):e15583.PubMedPubMedCentralCrossRef Chen S, et al. BushenHuoxue decoction suppresses M1 macrophage polarization and prevents LPS induced inflammatory bone loss by activating AMPK pathway. Heliyon. 2023;9(5):e15583.PubMedPubMedCentralCrossRef
155.
go back to reference Yang Y, et al. Saxagliptin regulates M1/M2 macrophage polarization via CaMKKbeta/AMPK pathway to attenuate NAFLD. Biochem Biophys Res Commun. 2018;503(3):1618–24.PubMedCrossRef Yang Y, et al. Saxagliptin regulates M1/M2 macrophage polarization via CaMKKbeta/AMPK pathway to attenuate NAFLD. Biochem Biophys Res Commun. 2018;503(3):1618–24.PubMedCrossRef
156.
go back to reference Hu HJ, et al. PLK1 promotes cholesterol efflux and alleviates atherosclerosis by up-regulating ABCA1 and ABCG1 expression via the AMPK/PPARgamma/LXRalpha pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(12):159221.PubMedCrossRef Hu HJ, et al. PLK1 promotes cholesterol efflux and alleviates atherosclerosis by up-regulating ABCA1 and ABCG1 expression via the AMPK/PPARgamma/LXRalpha pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(12):159221.PubMedCrossRef
157.
go back to reference Meng Z, et al. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int Immunopharmacol. 2021;94:107492.PubMedCrossRef Meng Z, et al. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int Immunopharmacol. 2021;94:107492.PubMedCrossRef
158.
go back to reference Lee GH, et al. Impressic acid attenuates the lipopolysaccharide-induced inflammatory response by activating the AMPK/GSK3beta/Nrf2 axis in RAW264.7 macrophages. Int J Mol Sci. 2021;22(2):762.PubMedPubMedCentralCrossRef Lee GH, et al. Impressic acid attenuates the lipopolysaccharide-induced inflammatory response by activating the AMPK/GSK3beta/Nrf2 axis in RAW264.7 macrophages. Int J Mol Sci. 2021;22(2):762.PubMedPubMedCentralCrossRef
159.
go back to reference Banskota S, et al. Salicylates ameliorate intestinal inflammation by activating macrophage AMPK. Inflamm Bowel Dis. 2021;27(6):914–26.PubMedCrossRef Banskota S, et al. Salicylates ameliorate intestinal inflammation by activating macrophage AMPK. Inflamm Bowel Dis. 2021;27(6):914–26.PubMedCrossRef
160.
go back to reference Tanaka M, et al. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients. 2020;12(5):1479.PubMedPubMedCentralCrossRef Tanaka M, et al. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients. 2020;12(5):1479.PubMedPubMedCentralCrossRef
161.
go back to reference Ren C, et al. IL-37 alleviates liver granuloma caused by Schistosoma japonicum infection by inducing alternative macrophage activation. Parasit Vectors. 2022;15(1):300.PubMedPubMedCentralCrossRef Ren C, et al. IL-37 alleviates liver granuloma caused by Schistosoma japonicum infection by inducing alternative macrophage activation. Parasit Vectors. 2022;15(1):300.PubMedPubMedCentralCrossRef
162.
go back to reference Martin LM, et al. 5-Amino-1-beta-d-ribofuranosyl-Imidazole-4-carboxamide (AICAR) reduces peripheral inflammation by macrophage phenotype shift. Int J Mol Sci. 2019;20(13):3255.PubMedPubMedCentralCrossRef Martin LM, et al. 5-Amino-1-beta-d-ribofuranosyl-Imidazole-4-carboxamide (AICAR) reduces peripheral inflammation by macrophage phenotype shift. Int J Mol Sci. 2019;20(13):3255.PubMedPubMedCentralCrossRef
163.
go back to reference Ye W, et al. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol. 2020;146:25–35.PubMedCrossRef Ye W, et al. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol. 2020;146:25–35.PubMedCrossRef
164.
go back to reference Liu X, et al. Geniposide combined with notoginsenoside R1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway. Front Pharmacol. 2021;12:687394.PubMedPubMedCentralCrossRef Liu X, et al. Geniposide combined with notoginsenoside R1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway. Front Pharmacol. 2021;12:687394.PubMedPubMedCentralCrossRef
165.
go back to reference Xu N, et al. Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 polarization via AdipoR1/APPL1/AMPK/PPARgamma signaling pathway in neonatal rats. Front Immunol. 2022;13:873382.PubMedPubMedCentralCrossRef Xu N, et al. Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 polarization via AdipoR1/APPL1/AMPK/PPARgamma signaling pathway in neonatal rats. Front Immunol. 2022;13:873382.PubMedPubMedCentralCrossRef
166.
Metadata
Title
The role of AMPK in macrophage metabolism, function and polarisation
Authors
Yinxing Cui
Junhua Chen
Zhao Zhang
Houyin Shi
Weichao Sun
Qian Yi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04772-6

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine