Skip to main content
Top
Published in: Journal of Translational Medicine 1/2023

Open Access 01-12-2023 | Afatinib | Research

Targeting epidermal growth factor receptor to recruit newly generated neuroblasts in cortical brain injuries

Authors: Ricardo Gómez-Oliva, Noelia Geribaldi-Doldán, Samuel Domínguez-García, Ricardo Pardillo-Díaz, Sergio Martínez-Ortega, José M. Oliva-Montero, Patricia Pérez-García, Francisco J. García-Cózar, Juan P. Muñoz-Miranda, Ismael Sánchez-Gomar, Pedro Nunez-Abades, Carmen Castro

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Background

Neurogenesis is stimulated in the subventricular zone (SVZ) of mice with cortical brain injuries. In most of these injuries, newly generated neuroblasts attempt to migrate toward the injury, accumulating within the corpus callosum not reaching the perilesional area.

Methods

We use a murine model of mechanical cortical brain injury, in which we perform unilateral cortical injuries in the primary motor cortex of adult male mice. We study neurogenesis in the SVZ and perilesional area at 7 and 14 dpi as well as the expression and concentration of the signaling molecule transforming growth factor alpha (TGF-α) and its receptor the epidermal growth factor (EGFR). We use the EGFR inhibitor Afatinib to promote neurogenesis in brain injuries.

Results

We show that microglial cells that emerge within the injured area and the SVZ in response to the injury express high levels of TGF-α leading to elevated concentrations of TGF-α in the cerebrospinal fluid. Thus, the number of neuroblasts in the SVZ increases in response to the injury, a large number of these neuroblasts remain immature and proliferate expressing the epidermal growth factor receptor (EGFR) and the proliferation marker Ki67. Restraining TGF-α release with a classical protein kinase C inhibitor reduces the number of these proliferative EGFR+ immature neuroblasts in the SVZ. In accordance, the inhibition of the TGF-α receptor, EGFR promotes migration of neuroblasts toward the injury leading to an elevated number of neuroblasts within the perilesional area.

Conclusions

Our results indicate that in response to an injury, microglial cells activated within the injury and the SVZ release TGF-α, activating the EGFR present in the neuroblasts membrane inducing their proliferation, delaying maturation and negatively regulating migration. The inactivation of this signaling pathway stimulates neuroblast migration toward the injury and enhances the quantity of neuroblasts within the injured area. These results suggest that these proteins may be used as target molecules to regenerate brain injuries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Toda T, Gage FH. Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018;373(3):693–709.PubMedCrossRef Toda T, Gage FH. Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018;373(3):693–709.PubMedCrossRef
5.
go back to reference Goldman JE. What are the characteristics of cycling cells in the adult central nervous system? J Cell Biochem. 2003;88(1):20–3.PubMedCrossRef Goldman JE. What are the characteristics of cycling cells in the adult central nervous system? J Cell Biochem. 2003;88(1):20–3.PubMedCrossRef
6.
go back to reference Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdiscip Rev Dev Biol. 2016;5(6):640–58.PubMedPubMedCentralCrossRef Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdiscip Rev Dev Biol. 2016;5(6):640–58.PubMedPubMedCentralCrossRef
8.
go back to reference Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17(3):329–40.PubMedCrossRef Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17(3):329–40.PubMedCrossRef
9.
go back to reference Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.PubMedPubMedCentralCrossRef Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.PubMedPubMedCentralCrossRef
10.
go back to reference Moraga A, Pradillo JM, Cuartero MI, Hernandez-Jimenez M, Oses M, Moro MA, et al. Toll-like receptor 4 modulates cell migration and cortical neurogenesis after focal cerebral ischemia. FASEB J. 2014;28(11):4710–8.PubMedCrossRef Moraga A, Pradillo JM, Cuartero MI, Hernandez-Jimenez M, Oses M, Moro MA, et al. Toll-like receptor 4 modulates cell migration and cortical neurogenesis after focal cerebral ischemia. FASEB J. 2014;28(11):4710–8.PubMedCrossRef
11.
go back to reference Romero-Grimaldi C, Murillo-Carretero M, Lopez-Toledano MA, Carrasco M, Castro C, Estrada C. ADAM-17/tumor necrosis factor-alpha-converting enzyme inhibits neurogenesis and promotes gliogenesis from neural stem cells. Stem Cells. 2011;29(10):1628–39.PubMedCrossRef Romero-Grimaldi C, Murillo-Carretero M, Lopez-Toledano MA, Carrasco M, Castro C, Estrada C. ADAM-17/tumor necrosis factor-alpha-converting enzyme inhibits neurogenesis and promotes gliogenesis from neural stem cells. Stem Cells. 2011;29(10):1628–39.PubMedCrossRef
12.
go back to reference Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.PubMedCrossRef Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.PubMedCrossRef
13.
go back to reference Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39(10):2837–44.PubMedCrossRef Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39(10):2837–44.PubMedCrossRef
14.
go back to reference Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802–13.PubMedCrossRef Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802–13.PubMedCrossRef
15.
go back to reference Yamashita T, Ninomiya M, Hernandez Acosta P, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci. 2006;26(24):6627–36.PubMedPubMedCentralCrossRef Yamashita T, Ninomiya M, Hernandez Acosta P, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci. 2006;26(24):6627–36.PubMedPubMedCentralCrossRef
16.
go back to reference Sundholm-Peters NL, Yang HK, Goings GE, Walker AS, Szele FG. Subventricular zone neuroblasts emigrate toward cortical lesions. J Neuropathol Exp Neurol. 2005;64(12):1089–100.PubMedCrossRef Sundholm-Peters NL, Yang HK, Goings GE, Walker AS, Szele FG. Subventricular zone neuroblasts emigrate toward cortical lesions. J Neuropathol Exp Neurol. 2005;64(12):1089–100.PubMedCrossRef
17.
go back to reference Zhang RL, LeTourneau Y, Gregg SR, Wang Y, Toh Y, Robin AM, et al. Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci. 2007;27(12):3157–62.PubMedCrossRef Zhang RL, LeTourneau Y, Gregg SR, Wang Y, Toh Y, Robin AM, et al. Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci. 2007;27(12):3157–62.PubMedCrossRef
18.
go back to reference Garcia-Bernal F, Geribaldi-Doldan N, Dominguez-Garcia S, Carrasco M, Murillo-Carretero M, Delgado-Ariza A, et al. Protein kinase c inhibition mediates neuroblast enrichment in mechanical brain injuries. Front Cell Neurosci. 2018;12:462.PubMedPubMedCentralCrossRef Garcia-Bernal F, Geribaldi-Doldan N, Dominguez-Garcia S, Carrasco M, Murillo-Carretero M, Delgado-Ariza A, et al. Protein kinase c inhibition mediates neuroblast enrichment in mechanical brain injuries. Front Cell Neurosci. 2018;12:462.PubMedPubMedCentralCrossRef
19.
go back to reference Geribaldi-Doldan N, Carrasco M, Murillo-Carretero M, Dominguez-Garcia S, Garcia-Cozar FJ, Munoz-Miranda JP, et al. Specific inhibition of ADAM17/TACE promotes neurogenesis in the injured motor cortex. Cell Death Dis. 2018;9(9):862.PubMedPubMedCentralCrossRef Geribaldi-Doldan N, Carrasco M, Murillo-Carretero M, Dominguez-Garcia S, Garcia-Cozar FJ, Munoz-Miranda JP, et al. Specific inhibition of ADAM17/TACE promotes neurogenesis in the injured motor cortex. Cell Death Dis. 2018;9(9):862.PubMedPubMedCentralCrossRef
20.
go back to reference Dominguez-Garcia S, Geribaldi-Doldan N, Gomez-Oliva R, Ruiz FA, Carrascal L, Bolivar J, et al. A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death Dis. 2020;11(4):262.PubMedPubMedCentralCrossRef Dominguez-Garcia S, Geribaldi-Doldan N, Gomez-Oliva R, Ruiz FA, Carrascal L, Bolivar J, et al. A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death Dis. 2020;11(4):262.PubMedPubMedCentralCrossRef
21.
go back to reference Magavi SS, Macklis JD. Induction of neuronal type-specific neurogenesis in the cerebral cortex of adult mice: manipulation of neural precursors in situ. Brain Res Dev Brain Res. 2002;134(1–2):57–76.PubMedCrossRef Magavi SS, Macklis JD. Induction of neuronal type-specific neurogenesis in the cerebral cortex of adult mice: manipulation of neural precursors in situ. Brain Res Dev Brain Res. 2002;134(1–2):57–76.PubMedCrossRef
22.
go back to reference Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, et al. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A. 2008;105(9):3581–6.PubMedPubMedCentralCrossRef Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, et al. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A. 2008;105(9):3581–6.PubMedPubMedCentralCrossRef
23.
go back to reference Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429–41.PubMedCrossRef Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429–41.PubMedCrossRef
24.
go back to reference Saha B, Peron S, Murray K, Jaber M, Gaillard A. Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res. 2013;11(3):965–77.PubMedCrossRef Saha B, Peron S, Murray K, Jaber M, Gaillard A. Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res. 2013;11(3):965–77.PubMedCrossRef
25.
go back to reference Romero-Grimaldi C, Murillo-Carretero M, Angel Lopez-Toledano M, Carrasco M, Castro C, Estrada C. ADAM-17/tumor necrosis factor-alpha-converting enzyme inhibits neurogenesis and promotes gliogenesis from neural stem cells. Stem Cells. 2011;29(10):1628–39.PubMedCrossRef Romero-Grimaldi C, Murillo-Carretero M, Angel Lopez-Toledano M, Carrasco M, Castro C, Estrada C. ADAM-17/tumor necrosis factor-alpha-converting enzyme inhibits neurogenesis and promotes gliogenesis from neural stem cells. Stem Cells. 2011;29(10):1628–39.PubMedCrossRef
26.
go back to reference Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H. Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci. 2006;32(1–2):187–98.PubMedCrossRef Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H. Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci. 2006;32(1–2):187–98.PubMedCrossRef
27.
go back to reference Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 2012;349(1):169–80.PubMedPubMedCentralCrossRef Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 2012;349(1):169–80.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Carulli D, Laabs T, Geller HM, Fawcett JW. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol. 2005;15(1):116–20.PubMedCrossRef Carulli D, Laabs T, Geller HM, Fawcett JW. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol. 2005;15(1):116–20.PubMedCrossRef
30.
go back to reference Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6):377–91.PubMedCrossRef Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6):377–91.PubMedCrossRef
31.
32.
go back to reference Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95(6):1246–65.PubMedPubMedCentralCrossRef Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95(6):1246–65.PubMedPubMedCentralCrossRef
33.
go back to reference Kim Y, Comte I, Szabo G, Hockberger P, Szele FG. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration. PLoS ONE. 2009;4(12): e8122.PubMedPubMedCentralCrossRef Kim Y, Comte I, Szabo G, Hockberger P, Szele FG. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration. PLoS ONE. 2009;4(12): e8122.PubMedPubMedCentralCrossRef
34.
go back to reference Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Lloyd KC, et al. The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A. 2006;103(6):1930–5.PubMedPubMedCentralCrossRef Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Lloyd KC, et al. The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A. 2006;103(6):1930–5.PubMedPubMedCentralCrossRef
35.
go back to reference Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science. 1984;223(4640):1079–82.PubMedCrossRef Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science. 1984;223(4640):1079–82.PubMedCrossRef
36.
go back to reference Pastrana E, Cheng LC, Doetsch F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A. 2009;106(15):6387–92.PubMedPubMedCentralCrossRef Pastrana E, Cheng LC, Doetsch F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A. 2009;106(15):6387–92.PubMedPubMedCentralCrossRef
37.
go back to reference Cesetti T, Obernier K, Bengtson CP, Fila T, Mandl C, Holzl-Wenig G, et al. Analysis of stem cell lineage progression in the neonatal subventricular zone identifies EGFR+/NG2- cells as transit-amplifying precursors. Stem Cells. 2009;27(6):1443–54.PubMedCrossRef Cesetti T, Obernier K, Bengtson CP, Fila T, Mandl C, Holzl-Wenig G, et al. Analysis of stem cell lineage progression in the neonatal subventricular zone identifies EGFR+/NG2- cells as transit-amplifying precursors. Stem Cells. 2009;27(6):1443–54.PubMedCrossRef
38.
go back to reference Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82(3):545–59.PubMedPubMedCentralCrossRef Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82(3):545–59.PubMedPubMedCentralCrossRef
39.
go back to reference Dang M, Armbruster N, Miller MA, Cermeno E, Hartmann M, Bell GW, et al. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc Natl Acad Sci U S A. 2013;110(24):9776–81.PubMedPubMedCentralCrossRef Dang M, Armbruster N, Miller MA, Cermeno E, Hartmann M, Bell GW, et al. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc Natl Acad Sci U S A. 2013;110(24):9776–81.PubMedPubMedCentralCrossRef
40.
go back to reference Dang M, Dubbin K, D’Aiello A, Hartmann M, Lodish H, Herrlich A. Epidermal growth factor (EGF) ligand release by substrate-specific a disintegrin and metalloproteases (ADAMs) involves different protein kinase C (PKC) isoenzymes depending on the stimulus. J Biol Chem. 2011;286(20):17704–13.PubMedPubMedCentralCrossRef Dang M, Dubbin K, D’Aiello A, Hartmann M, Lodish H, Herrlich A. Epidermal growth factor (EGF) ligand release by substrate-specific a disintegrin and metalloproteases (ADAMs) involves different protein kinase C (PKC) isoenzymes depending on the stimulus. J Biol Chem. 2011;286(20):17704–13.PubMedPubMedCentralCrossRef
41.
go back to reference McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1573–6.PubMedPubMedCentralCrossRef McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1573–6.PubMedPubMedCentralCrossRef
42.
go back to reference Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577–9.CrossRef Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160(7):1577–9.CrossRef
43.
go back to reference Rabaneda LG, Geribaldi-Doldan N, Murillo-Carretero M, Carrasco M, Martinez-Salas JM, Verastegui C, et al. Altered regulation of the Spry2/Dyrk1A/PP2A triad by homocysteine impairs neural progenitor cell proliferation. Biochim Biophys Acta. 2016;1863(12):3015–26.PubMedCrossRef Rabaneda LG, Geribaldi-Doldan N, Murillo-Carretero M, Carrasco M, Martinez-Salas JM, Verastegui C, et al. Altered regulation of the Spry2/Dyrk1A/PP2A triad by homocysteine impairs neural progenitor cell proliferation. Biochim Biophys Acta. 2016;1863(12):3015–26.PubMedCrossRef
44.
go back to reference Murillo-Carretero M, Geribaldi-Doldan N, Flores-Giubi E, Garcia-Bernal F, Navarro-Quiroz EA, Carrasco M, et al. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCbeta activation. Br J Pharmacol. 2017;174(14):2373–92.PubMedPubMedCentralCrossRef Murillo-Carretero M, Geribaldi-Doldan N, Flores-Giubi E, Garcia-Bernal F, Navarro-Quiroz EA, Carrasco M, et al. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCbeta activation. Br J Pharmacol. 2017;174(14):2373–92.PubMedPubMedCentralCrossRef
45.
go back to reference Carrasco M, Rabaneda LG, Murillo-Carretero M, Ortega-Martinez S, Martinez-Chantar ML, Woodhoo A, et al. Glycine N-methyltransferase expression in the hippocampus and its role in neurogenesis and cognitive performance. Hippocampus. 2014;24(7):840–52.PubMedPubMedCentralCrossRef Carrasco M, Rabaneda LG, Murillo-Carretero M, Ortega-Martinez S, Martinez-Chantar ML, Woodhoo A, et al. Glycine N-methyltransferase expression in the hippocampus and its role in neurogenesis and cognitive performance. Hippocampus. 2014;24(7):840–52.PubMedPubMedCentralCrossRef
46.
go back to reference Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRef Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRef
47.
go back to reference Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51.PubMedPubMedCentralCrossRef Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51.PubMedPubMedCentralCrossRef
49.
go back to reference Geribaldi-Doldan N, Flores-Giubi E, Murillo-Carretero M, Garcia-Bernal F, Carrasco M, Macias-Sanchez AJ, Domínguez-Riscart J, Verástegui C, Hernández-Galán R, Castro C. 12-deoxyphorbols promote adult neurogenesis by inducing neural progenitor cell proliferation via PKC activation. Int J Neuropsychopharmacol. 2015;19(1):pyv085. https://doi.org/10.1093/ijnp/pyv085CrossRefPubMedPubMedCentral Geribaldi-Doldan N, Flores-Giubi E, Murillo-Carretero M, Garcia-Bernal F, Carrasco M, Macias-Sanchez AJ, Domínguez-Riscart J, Verástegui C, Hernández-Galán R, Castro C. 12-deoxyphorbols promote adult neurogenesis by inducing neural progenitor cell proliferation via PKC activation. Int J Neuropsychopharmacol. 2015;19(1):pyv085. https://​doi.​org/​10.​1093/​ijnp/​pyv085CrossRefPubMedPubMedCentral
50.
go back to reference Rabaneda LG, Carrasco M, Lopez-Toledano MA, Murillo-Carretero M, Ruiz FA, Estrada C, et al. Homocysteine inhibits proliferation of neuronal precursors in the mouse adult brain by impairing the basic fibroblast growth factor signaling cascade and reducing extracellular regulated kinase 1/2-dependent cyclin E expression. FASEB J. 2008;22(11):3823–35.PubMedCrossRef Rabaneda LG, Carrasco M, Lopez-Toledano MA, Murillo-Carretero M, Ruiz FA, Estrada C, et al. Homocysteine inhibits proliferation of neuronal precursors in the mouse adult brain by impairing the basic fibroblast growth factor signaling cascade and reducing extracellular regulated kinase 1/2-dependent cyclin E expression. FASEB J. 2008;22(11):3823–35.PubMedCrossRef
51.
go back to reference Ezzanad A, Gomez-Oliva R, Escobar-Montano F, Diez-Salguero M, Geribaldi-Doldan N, Dominguez-Garcia S, et al. Phorbol diesters and 12-deoxy-16-hydroxyphorbol 13,16-diesters induce TGFalpha release and adult mouse neurogenesis. J Med Chem. 2021;64(9):6070–84.PubMedCrossRef Ezzanad A, Gomez-Oliva R, Escobar-Montano F, Diez-Salguero M, Geribaldi-Doldan N, Dominguez-Garcia S, et al. Phorbol diesters and 12-deoxy-16-hydroxyphorbol 13,16-diesters induce TGFalpha release and adult mouse neurogenesis. J Med Chem. 2021;64(9):6070–84.PubMedCrossRef
52.
go back to reference Curtis MJ, Abernethy DR. Revision of instructions to authors for pharmacology research and perspectives: enhancing the quality and transparency of published work. Pharmacol Res Perspect. 2015;3(2): e00106.PubMedPubMedCentralCrossRef Curtis MJ, Abernethy DR. Revision of instructions to authors for pharmacology research and perspectives: enhancing the quality and transparency of published work. Pharmacol Res Perspect. 2015;3(2): e00106.PubMedPubMedCentralCrossRef
54.
go back to reference Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706–17.PubMedPubMedCentralCrossRef Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706–17.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Dayer AG, Cleaver KM, Abouantoun T, Cameron HA. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol. 2005;168(3):415–27.PubMedPubMedCentralCrossRef Dayer AG, Cleaver KM, Abouantoun T, Cameron HA. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol. 2005;168(3):415–27.PubMedPubMedCentralCrossRef
57.
go back to reference Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346(6206):237–41.PubMedCrossRef Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346(6206):237–41.PubMedCrossRef
58.
go back to reference Goings GE, Kozlowski DA, Szele FG. Differential activation of microglia in neurogenic versus non-neurogenic regions of the forebrain. Glia. 2006;54(4):329–42.PubMedCrossRef Goings GE, Kozlowski DA, Szele FG. Differential activation of microglia in neurogenic versus non-neurogenic regions of the forebrain. Glia. 2006;54(4):329–42.PubMedCrossRef
59.
go back to reference Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z, et al. TGFalpha preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J Cereb Blood Flow Metab. 2020;40(3):639–55.PubMedCrossRef Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z, et al. TGFalpha preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J Cereb Blood Flow Metab. 2020;40(3):639–55.PubMedCrossRef
61.
go back to reference de Marinis F, Laktionov KK, Poltoratskiy A, Egorova I, Hochmair M, Passaro A, et al. Afatinib in EGFR TKI-naïve patients with locally advanced or metastatic EGFR mutation-positive non-small cell lung cancer: interim analysis of a Phase 3b study. Lung Cancer. 2021;152:127–34.PubMedCrossRef de Marinis F, Laktionov KK, Poltoratskiy A, Egorova I, Hochmair M, Passaro A, et al. Afatinib in EGFR TKI-naïve patients with locally advanced or metastatic EGFR mutation-positive non-small cell lung cancer: interim analysis of a Phase 3b study. Lung Cancer. 2021;152:127–34.PubMedCrossRef
Metadata
Title
Targeting epidermal growth factor receptor to recruit newly generated neuroblasts in cortical brain injuries
Authors
Ricardo Gómez-Oliva
Noelia Geribaldi-Doldán
Samuel Domínguez-García
Ricardo Pardillo-Díaz
Sergio Martínez-Ortega
José M. Oliva-Montero
Patricia Pérez-García
Francisco J. García-Cózar
Juan P. Muñoz-Miranda
Ismael Sánchez-Gomar
Pedro Nunez-Abades
Carmen Castro
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Afatinib
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04707-1

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine