Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

T1ρ MRI of healthy and fibrotic human livers at 1.5 T

Authors: Anup Singh, Damodar Reddy, Mohammad Haris, Kejia Cai, K. Rajender Reddy, Hari Hariharan, Ravinder Reddy

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Liver fibrosis is a public health problem worldwide. There is a need of noninvasive imaging based methods for better diagnosis of this disease. In the current study, we aim to evaluate the potential of T1ρ MRI technique in detecting and characterizing different grades of liver fibrosis in vivo in humans.

Methods

Healthy subjects and patients with liver fibrosis were prospectively recruited for T1ρ MRI of liver on a 1.5 T MR scanner. Single slice T1ρ weighted images were acquired at different spin lock duration (0, 10, 20 and 30 ms) with spin lock amplitude of 500 Hz in a single breath-hold. Additionally, liver’s T1ρ images were acquired from five healthy subjects on the same day (n = 2) and different day (n = 2) sessions for test–retest study. Liver biopsy samples from patients were obtained and used to calculate the METAVIR score to define the stage of fibrosis and inflammation grade. T1ρ maps were generated followed by computation of mean and standard deviation (SD) values. Coefficient of variation (COV) of T1ρ values between two MRI scans was computed to determine reproducibility in liver. T test was used to compare T1ρ values between healthy and fibrotic liver. Pearson correlation was performed between stages of liver fibrosis and T1ρ values.

Results

The mean (SD) T1ρ value among subject with healthy liver was 51.04 (3.06) ms. The COV of T1ρ values between two repetitions in the same day session was 0.83 ± 0.8 % and in different day session was 5.4 ± 2.7 %. T1ρ values in fibrotic liver were significantly higher compared to those of healthy liver (p < 0.05). A statically significant correlation between stages of fibrosis and T1ρ values was observed (r = 0.99, p < 0.05). Inflammation score for one patient was 2 and for remaining patients it was 1.

Conclusions

Proposed T1ρ pulse sequence design and protocol enabled acquisition of a single slice T1ρ weighted images in a single breath-hold and hence mitigated breathing motion related artifacts. Preliminary results have shown the sensitivity of T1ρ values to changes induced by liver fibrosis, and may potentially be used as a clinical biomarker to delineate the stages of liver fibrosis. Further, studies on a large number of subjects are required to validate the observations of the current study. Nevertheless, T1ρ imaging can be easily setup on a clinical scanner to monitor the progression of liver fibrosis and to the evaluate efficacy of anti-fibrotic drugs.
Literature
2.
go back to reference Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol. 1999;5:301–4.PubMed Thampanitchawong P, Piratvisuth T. Liver biopsy: complications and risk factors. World J Gastroenterol. 1999;5:301–4.PubMed
3.
go back to reference Wells RG. Antifibrotic and HepatoProtectant therapies-hot prospect and challenges to clinica testing. 2008 AASLD Postgraduate Course. Wells RG. Antifibrotic and HepatoProtectant therapies-hot prospect and challenges to clinica testing. 2008 AASLD Postgraduate Course.
4.
go back to reference Verveer C, de Knegt RJ. Non-invasive measurement of liver fibrosis: application of the FibroScan in hepatology. Scand J Gastroenterol. 2006;41:85–8.CrossRef Verveer C, de Knegt RJ. Non-invasive measurement of liver fibrosis: application of the FibroScan in hepatology. Scand J Gastroenterol. 2006;41:85–8.CrossRef
5.
go back to reference Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, Horsmans Y, Van Beers BE. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 2006;19:173–9.CrossRefPubMed Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, Horsmans Y, Van Beers BE. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed. 2006;19:173–9.CrossRefPubMed
6.
go back to reference Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB. MR imaging of liver fibrosis: current state of the art. Radiographics. 2009;29:1615–35.CrossRefPubMed Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB. MR imaging of liver fibrosis: current state of the art. Radiographics. 2009;29:1615–35.CrossRefPubMed
7.
go back to reference Aguirre DA, Behling CA, Alpert E, Hassanein TI, Sirlin CB. Liver fibrosis: noninvasive diagnosis with double contrast material-enhanced MR imaging. Radiology. 2006;239:425–37.CrossRefPubMed Aguirre DA, Behling CA, Alpert E, Hassanein TI, Sirlin CB. Liver fibrosis: noninvasive diagnosis with double contrast material-enhanced MR imaging. Radiology. 2006;239:425–37.CrossRefPubMed
8.
go back to reference Hughes-Cassidy F, Chavez AD, Schlang A, Hassanein T, Gamst A, Wolfson T, Sirlin C. Superparamagnetic iron oxides and low molecular weight gadolinium chelates are synergistic for direct visualization of advanced liver fibrosis. J Magn Reson Imaging. 2007;26:728–37.CrossRefPubMed Hughes-Cassidy F, Chavez AD, Schlang A, Hassanein T, Gamst A, Wolfson T, Sirlin C. Superparamagnetic iron oxides and low molecular weight gadolinium chelates are synergistic for direct visualization of advanced liver fibrosis. J Magn Reson Imaging. 2007;26:728–37.CrossRefPubMed
9.
go back to reference Razek AA, Abdalla A, Omran E, Fathy A, Zalata K. Diagnosis and quantification of hepatic fibrosis in children with diffusion weighted MR imaging. Eur J Radiol. 2009;78:129–34.CrossRefPubMed Razek AA, Abdalla A, Omran E, Fathy A, Zalata K. Diagnosis and quantification of hepatic fibrosis in children with diffusion weighted MR imaging. Eur J Radiol. 2009;78:129–34.CrossRefPubMed
10.
go back to reference Chen JH, Yeung HN, Lee SK, Chai JW. Evaluation of liver diseases via MTC and contrast agent. J Magn Reson Imaging. 1999;9:257–65.CrossRefPubMed Chen JH, Yeung HN, Lee SK, Chai JW. Evaluation of liver diseases via MTC and contrast agent. J Magn Reson Imaging. 1999;9:257–65.CrossRefPubMed
11.
go back to reference Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographics. 2009;29:1653–64.CrossRefPubMed Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographics. 2009;29:1653–64.CrossRefPubMed
12.
13.
go back to reference Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23:547–53.CrossRefPubMed Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23:547–53.CrossRefPubMed
14.
go back to reference Witschey WR, Pilla JJ, Ferrari G, Koomalsingh K, Haris M, Hinmon R, Zsido G, Gorman JH 3rd, Gorman RC, Reddy R. Rotating frame spin lattice relaxation in a swine model of chronic, left ventricular myocardial infarction. Magn Reson Med. 2010;64:1453–60.PubMedCentralCrossRefPubMed Witschey WR, Pilla JJ, Ferrari G, Koomalsingh K, Haris M, Hinmon R, Zsido G, Gorman JH 3rd, Gorman RC, Reddy R. Rotating frame spin lattice relaxation in a swine model of chronic, left ventricular myocardial infarction. Magn Reson Med. 2010;64:1453–60.PubMedCentralCrossRefPubMed
15.
go back to reference Haris M, McArdle E, Fenty M, Singh A, Davatzikos C, Trojanowski JQ, Melhem ER, Clark CM, Borthakur A. Early marker for Alzheimer’s disease: hippocampus T1rho (T(1rho)) estimation. J Magn Reson Imaging. 2009;29:1008–12.PubMedCentralCrossRefPubMed Haris M, McArdle E, Fenty M, Singh A, Davatzikos C, Trojanowski JQ, Melhem ER, Clark CM, Borthakur A. Early marker for Alzheimer’s disease: hippocampus T1rho (T(1rho)) estimation. J Magn Reson Imaging. 2009;29:1008–12.PubMedCentralCrossRefPubMed
16.
go back to reference Wang YX, Yuan J, Chu ES, Go MY, Huang H, Ahuja AT, Sung JJ, Yu J. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology. 2011;259:712–9.CrossRefPubMed Wang YX, Yuan J, Chu ES, Go MY, Huang H, Ahuja AT, Sung JJ, Yu J. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology. 2011;259:712–9.CrossRefPubMed
17.
go back to reference Allkemper T, Sagmeister F, Cicinnati V, Beckebaum S, Kooijman H, Kanthak C, Stehling C, Heindel W. Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology. 2013;271:408–15.CrossRefPubMed Allkemper T, Sagmeister F, Cicinnati V, Beckebaum S, Kooijman H, Kanthak C, Stehling C, Heindel W. Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology. 2013;271:408–15.CrossRefPubMed
18.
go back to reference Rauscher I, Eiber M, Ganter C, Martirosian P, Safi W, Umgelter A, Rummeny EJ, Holzapfel K. Evaluation of T1rho as a potential MR biomarker for liver cirrhosis: comparison of healthy control subjects and patients with liver cirrhosis. Eur J Radiol. 2014;83:900–4.CrossRefPubMed Rauscher I, Eiber M, Ganter C, Martirosian P, Safi W, Umgelter A, Rummeny EJ, Holzapfel K. Evaluation of T1rho as a potential MR biomarker for liver cirrhosis: comparison of healthy control subjects and patients with liver cirrhosis. Eur J Radiol. 2014;83:900–4.CrossRefPubMed
19.
go back to reference Deng M, Zhao F, Yuan J, Ahuja AT, Wang YX. Liver T1rho MRI measurement in healthy human subjects at 3 T: a preliminary study with a two-dimensional fast-field echo sequence. Br J Radiol. 2014;85:e590–5.CrossRef Deng M, Zhao F, Yuan J, Ahuja AT, Wang YX. Liver T1rho MRI measurement in healthy human subjects at 3 T: a preliminary study with a two-dimensional fast-field echo sequence. Br J Radiol. 2014;85:e590–5.CrossRef
20.
21.
go back to reference Witschey WR 2nd, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wallman DJ, Wang C, Reddy R. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186:75–85.PubMedCentralCrossRefPubMed Witschey WR 2nd, Borthakur A, Elliott MA, Mellon E, Niyogi S, Wallman DJ, Wang C, Reddy R. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186:75–85.PubMedCentralCrossRefPubMed
22.
go back to reference Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T(1rho)-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson. 2003;162:113–21.CrossRefPubMed Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T(1rho)-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson. 2003;162:113–21.CrossRefPubMed
23.
go back to reference Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology. 1994; 20:15–20. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology. 1994; 20:15–20.
24.
go back to reference Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24:289–93. Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24:289–93.
25.
go back to reference Germani G, Hytiroglou P, Fotiadu A, Burroughs AK, Dhillon AP. Assessment of fibrosis and cirrhosis in liver biopsies: an update. Semin Liver Dis. 2011;31:82–90.CrossRefPubMed Germani G, Hytiroglou P, Fotiadu A, Burroughs AK, Dhillon AP. Assessment of fibrosis and cirrhosis in liver biopsies: an update. Semin Liver Dis. 2011;31:82–90.CrossRefPubMed
26.
go back to reference Schmucker DL. Age-related changes in liver structure and function: implications for disease ? Exp Gerontol. 2005;40:650–9.CrossRefPubMed Schmucker DL. Age-related changes in liver structure and function: implications for disease ? Exp Gerontol. 2005;40:650–9.CrossRefPubMed
Metadata
Title
T1ρ MRI of healthy and fibrotic human livers at 1.5 T
Authors
Anup Singh
Damodar Reddy
Mohammad Haris
Kejia Cai
K. Rajender Reddy
Hari Hariharan
Ravinder Reddy
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0648-0

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine