Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2015

Open Access 01-12-2015 | Review

Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems

Authors: Nina Desai, Pooja Rambhia, Arsela Gishto

Published in: Reproductive Biology and Endocrinology | Issue 1/2015

Login to get access

Abstract

Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.
Literature
1.
go back to reference Baharvand H, Jafary H, Massumi M, Ashtiani SK. Generation of insulin-secreting cells from human embryonic stem cells. Dev Growth Differ. 2006;48(5):323–32. doi:10.1111/j.1440–169X.2006.00867.x.PubMed Baharvand H, Jafary H, Massumi M, Ashtiani SK. Generation of insulin-secreting cells from human embryonic stem cells. Dev Growth Differ. 2006;48(5):323–32. doi:10.1111/j.1440–169X.2006.00867.x.PubMed
2.
go back to reference Sundberg M, Andersson PH, Akesson E, Odeberg J, Holmberg L, Inzunza J, et al. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue. Cell Transplant. 2011;20(2):177–91. doi:10.3727/096368910X527266.PubMed Sundberg M, Andersson PH, Akesson E, Odeberg J, Holmberg L, Inzunza J, et al. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue. Cell Transplant. 2011;20(2):177–91. doi:10.3727/096368910X527266.PubMed
3.
go back to reference Pal R, Mamidi MK, Das AK, Bhonde R. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions. J Biosci Bioeng. 2013;115(2):200–6. doi:10.1016/j.jbiosc.2012.08.018.PubMed Pal R, Mamidi MK, Das AK, Bhonde R. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions. J Biosci Bioeng. 2013;115(2):200–6. doi:10.1016/j.jbiosc.2012.08.018.PubMed
4.
go back to reference Miki T, Ring A, Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods. 2011;17(5):557–68. doi:10.1089/ten.TEC.2010.0437.PubMed Miki T, Ring A, Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods. 2011;17(5):557–68. doi:10.1089/ten.TEC.2010.0437.PubMed
5.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMed
6.
go back to reference Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4. doi:10.1038/nbt1001–971.PubMed Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4. doi:10.1038/nbt1001–971.PubMed
7.
go back to reference Marti M, Mulero L, Pardo C, Morera C, Carrio M, Laricchia-Robbio L, et al. Characterization of pluripotent stem cells. Nat Protoc. 2013;8(2):223–53. doi:10.1038/nprot.2012.154.PubMed Marti M, Mulero L, Pardo C, Morera C, Carrio M, Laricchia-Robbio L, et al. Characterization of pluripotent stem cells. Nat Protoc. 2013;8(2):223–53. doi:10.1038/nprot.2012.154.PubMed
8.
go back to reference Loser P, Schirm J, Guhr A, Wobus AM, Kurtz A. Human embryonic stem cell lines and their use in international research. Stem Cells. 2010;28(2):240–6. doi:10.1002/stem.286.PubMedCentralPubMed Loser P, Schirm J, Guhr A, Wobus AM, Kurtz A. Human embryonic stem cell lines and their use in international research. Stem Cells. 2010;28(2):240–6. doi:10.1002/stem.286.PubMedCentralPubMed
9.
go back to reference Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol. 2010;88(3):479–90. doi:10.1139/o09–188.PubMed Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol. 2010;88(3):479–90. doi:10.1139/o09–188.PubMed
10.
go back to reference Strom S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Stromberg AM, et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod. 2007;22(12):3051–8. doi:10.1093/humrep/dem335.PubMed Strom S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Stromberg AM, et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod. 2007;22(12):3051–8. doi:10.1093/humrep/dem335.PubMed
11.
go back to reference Tanaka N, Takeuchi T, Neri QV, Sills ES, Palermo GD. Laser-assisted blastocyst dissection and subsequent cultivation of embryonic stem cells in a serum/cell free culture system: applications and preliminary results in a murine model. J Transl Med. 2006;4:20. doi:10.1186/1479–5876–4–20.PubMedCentralPubMed Tanaka N, Takeuchi T, Neri QV, Sills ES, Palermo GD. Laser-assisted blastocyst dissection and subsequent cultivation of embryonic stem cells in a serum/cell free culture system: applications and preliminary results in a murine model. J Transl Med. 2006;4:20. doi:10.1186/1479–5876–4–20.PubMedCentralPubMed
12.
go back to reference Turetsky T, Aizenman E, Gil Y, Weinberg N, Shufaro Y, Revel A, et al. Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod. 2008;23(1):46–53. doi:10.1093/humrep/dem351.PubMed Turetsky T, Aizenman E, Gil Y, Weinberg N, Shufaro Y, Revel A, et al. Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod. 2008;23(1):46–53. doi:10.1093/humrep/dem351.PubMed
13.
go back to reference Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353–6. doi:10.1056/NEJMsr040330.PubMed Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353–6. doi:10.1056/NEJMsr040330.PubMed
14.
go back to reference Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. doi:10.1038/74447.PubMed Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. doi:10.1038/74447.PubMed
15.
go back to reference Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, et al. Derivation of xeno-free and GMP-grade human embryonic stem cells–platforms for future clinical applications. PLoS One. 2012;7(6):e35325. doi:10.1371/journal.pone.0035325.PubMedCentralPubMed Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, et al. Derivation of xeno-free and GMP-grade human embryonic stem cells–platforms for future clinical applications. PLoS One. 2012;7(6):e35325. doi:10.1371/journal.pone.0035325.PubMedCentralPubMed
16.
go back to reference Johnson MH. Human ES, cells and a blastocyst from one embryo: exciting science but conflicting ethics? Cell Stem Cell. 2008;2(2):103–4. doi:10.1016/j.stem.2008.01.021.PubMed Johnson MH. Human ES, cells and a blastocyst from one embryo: exciting science but conflicting ethics? Cell Stem Cell. 2008;2(2):103–4. doi:10.1016/j.stem.2008.01.021.PubMed
17.
go back to reference Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2(2):113–7. doi:10.1016/j.stem.2007.12.013.PubMed Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2(2):113–7. doi:10.1016/j.stem.2007.12.013.PubMed
18.
go back to reference Ilic D, Giritharan G, Zdravkovic T, Caceres E, Genbacev O, Fisher SJ, et al. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev. 2009;18(9):1343–50. doi:10.1089/scd.2008.0416.PubMed Ilic D, Giritharan G, Zdravkovic T, Caceres E, Genbacev O, Fisher SJ, et al. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev. 2009;18(9):1343–50. doi:10.1089/scd.2008.0416.PubMed
19.
go back to reference Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481–5. doi:10.1038/nature05142.PubMed Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481–5. doi:10.1038/nature05142.PubMed
20.
go back to reference Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227(2):271–8. doi:10.1006/dbio.2000.9912.PubMed Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227(2):271–8. doi:10.1006/dbio.2000.9912.PubMed
21.
go back to reference Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R. Human embryonic stem cells derived without feeder cells. Lancet. 2005;365(9471):1636–41. doi:10.1016/S0140–6736(05)66473–2.PubMed Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R. Human embryonic stem cells derived without feeder cells. Lancet. 2005;365(9471):1636–41. doi:10.1016/S0140–6736(05)66473–2.PubMed
22.
go back to reference Galan A, Diaz-Gimeno P, Poo ME, Valbuena D, Sanchez E, Ruiz V, et al. Defining the genomic signature of totipotency and pluripotency during early human development. PLoS One. 2013;8(4):e62135. doi:10.1371/journal.pone.0062135.PubMedCentralPubMed Galan A, Diaz-Gimeno P, Poo ME, Valbuena D, Sanchez E, Ruiz V, et al. Defining the genomic signature of totipotency and pluripotency during early human development. PLoS One. 2013;8(4):e62135. doi:10.1371/journal.pone.0062135.PubMedCentralPubMed
23.
go back to reference Giritharan G, Ilic D, Gormley M, Krtolica A. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS One. 2011;6(10):e26570. doi:10.1371/journal.pone.0026570.PubMedCentralPubMed Giritharan G, Ilic D, Gormley M, Krtolica A. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS One. 2011;6(10):e26570. doi:10.1371/journal.pone.0026570.PubMedCentralPubMed
24.
go back to reference Cobo F, Navarro JM, Herrera MI, Vivo A, Porcel D, Hernandez C, et al. Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: toward an implementation of microbiological quality assurance program in stem cell banks. Cloning Stem Cells. 2008;10(1):65–74. doi:10.1089/clo.2007.0020.PubMed Cobo F, Navarro JM, Herrera MI, Vivo A, Porcel D, Hernandez C, et al. Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: toward an implementation of microbiological quality assurance program in stem cell banks. Cloning Stem Cells. 2008;10(1):65–74. doi:10.1089/clo.2007.0020.PubMed
25.
go back to reference Llewelyn CA, Hewitt PE, Knight RS, Amar K, Cousens S, Mackenzie J, et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet. 2004;363(9407):417–21. doi:10.1016/S0140–6736(04)15486-X.PubMed Llewelyn CA, Hewitt PE, Knight RS, Amar K, Cousens S, Mackenzie J, et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet. 2004;363(9407):417–21. doi:10.1016/S0140–6736(04)15486-X.PubMed
26.
go back to reference Kubikova I, Konecna H, Sedo O, Zdrahal Z, Rehulka P, Hribkova H, et al. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy. 2009;11(3):330–40. 1 p following 40. doi:10.1080/14653240802595531.PubMed Kubikova I, Konecna H, Sedo O, Zdrahal Z, Rehulka P, Hribkova H, et al. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy. 2009;11(3):330–40. 1 p following 40. doi:10.1080/14653240802595531.PubMed
27.
go back to reference Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56. doi:10.1038/sj.leu.2404132.PubMed Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56. doi:10.1038/sj.leu.2404132.PubMed
28.
go back to reference Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11(2):228–32. doi:10.1038/nm1181.PubMed Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11(2):228–32. doi:10.1038/nm1181.PubMed
29.
go back to reference Bongso A, Fong CY, Ng SC, Ratnam S. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod. 1994;9(11):2110–7.PubMed Bongso A, Fong CY, Ng SC, Ratnam S. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod. 1994;9(11):2110–7.PubMed
30.
go back to reference Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, et al. Human feeder layers for human embryonic stem cells. Biol Reprod. 2003;68(6):2150–6. doi:10.1095/biolreprod.102.012583.PubMed Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, et al. Human feeder layers for human embryonic stem cells. Biol Reprod. 2003;68(6):2150–6. doi:10.1095/biolreprod.102.012583.PubMed
31.
go back to reference Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol. 2002;20(9):933–6. doi:10.1038/nbt726.PubMed Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol. 2002;20(9):933–6. doi:10.1038/nbt726.PubMed
32.
go back to reference Xi J, Wang Y, Zhang P, He L, Nan X, Yue W, et al. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS One. 2010;5(12):e14457. doi:10.1371/journal.pone.0014457.PubMedCentralPubMed Xi J, Wang Y, Zhang P, He L, Nan X, Yue W, et al. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS One. 2010;5(12):e14457. doi:10.1371/journal.pone.0014457.PubMedCentralPubMed
33.
go back to reference Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells. 2003;21(2):131–42. doi:10.1634/stemcells.21–2–131.PubMed Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells. 2003;21(2):131–42. doi:10.1634/stemcells.21–2–131.PubMed
34.
go back to reference Cho M, Lee EJ, Nam H, Yang JH, Cho J, Lim JM, et al. Human feeder layer system derived from umbilical cord stromal cells for human embryonic stem cells. Fertil Steril. 2010;93(8):2525–31. doi:10.1016/j.fertnstert.2010.03.027.PubMed Cho M, Lee EJ, Nam H, Yang JH, Cho J, Lim JM, et al. Human feeder layer system derived from umbilical cord stromal cells for human embryonic stem cells. Fertil Steril. 2010;93(8):2525–31. doi:10.1016/j.fertnstert.2010.03.027.PubMed
35.
go back to reference Genbacev O, Krtolica A, Zdravkovic T, Brunette E, Powell S, Nath A, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril. 2005;83(5):1517–29. doi:10.1016/j.fertnstert.2005.01.086.PubMed Genbacev O, Krtolica A, Zdravkovic T, Brunette E, Powell S, Nath A, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril. 2005;83(5):1517–29. doi:10.1016/j.fertnstert.2005.01.086.PubMed
36.
go back to reference Miyamoto K, Hayashi K, Suzuki T, Ichihara S, Yamada T, Kano Y, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells. 2004;22(4):433–40. doi:10.1634/stemcells.22–4–433.PubMed Miyamoto K, Hayashi K, Suzuki T, Ichihara S, Yamada T, Kano Y, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells. 2004;22(4):433–40. doi:10.1634/stemcells.22–4–433.PubMed
37.
go back to reference Gao X, Yan J, Shen Y, Li M, Ma S, Wang J, et al. Human fetal trophonema matrix and uterine endometrium support better human embryonic stem cell growth and neural differentiation than mouse embryonic fibroblasts. Cell Reprogram. 2010;12(3):295–303. doi:10.1089/cell.2009.0071.PubMed Gao X, Yan J, Shen Y, Li M, Ma S, Wang J, et al. Human fetal trophonema matrix and uterine endometrium support better human embryonic stem cell growth and neural differentiation than mouse embryonic fibroblasts. Cell Reprogram. 2010;12(3):295–303. doi:10.1089/cell.2009.0071.PubMed
38.
go back to reference Lee JB, Lee JE, Park JH, Kim SJ, Kim MK, Roh SI, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod. 2005;72(1):42–9. doi:10.1095/biolreprod.104.033480.PubMed Lee JB, Lee JE, Park JH, Kim SJ, Kim MK, Roh SI, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod. 2005;72(1):42–9. doi:10.1095/biolreprod.104.033480.PubMed
39.
go back to reference Lee JB, Song JM, Lee JE, Park JH, Kim SJ, Kang SM, et al. Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction. 2004;128(6):727–35. doi:10.1530/rep.1.00415.PubMed Lee JB, Song JM, Lee JE, Park JH, Kim SJ, Kang SM, et al. Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction. 2004;128(6):727–35. doi:10.1530/rep.1.00415.PubMed
40.
go back to reference Aguilar-Gallardo C, Poo M, Gomez E, Galan A, Sanchez E, Marques-Mari A, et al. Derivation, characterization, differentiation, and registration of seven human embryonic stem cell lines (VAL-3,-4,-5,-6 M,-7,-8, and-9) on human feeder. In Vitro Cell Dev Biol Anim. 2010;46(3–4):317–26. doi:10.1007/s11626–010–9285–3.PubMed Aguilar-Gallardo C, Poo M, Gomez E, Galan A, Sanchez E, Marques-Mari A, et al. Derivation, characterization, differentiation, and registration of seven human embryonic stem cell lines (VAL-3,-4,-5,-6 M,-7,-8, and-9) on human feeder. In Vitro Cell Dev Biol Anim. 2010;46(3–4):317–26. doi:10.1007/s11626–010–9285–3.PubMed
41.
go back to reference Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One. 2010;5(4):e10246. doi:10.1371/journal.pone.0010246.PubMedCentralPubMed Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One. 2010;5(4):e10246. doi:10.1371/journal.pone.0010246.PubMedCentralPubMed
42.
go back to reference Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, et al. Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod. 2007;22(5):1231–8. doi:10.1093/humrep/del523.PubMed Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, et al. Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod. 2007;22(5):1231–8. doi:10.1093/humrep/del523.PubMed
43.
go back to reference Desai N, Ludgin J, Goldberg J, Falcone T. Development of a xeno-free non-contact co-culture system for derivation and maintenance of embryonic stem cells using a novel human endometrial cell line. J Assist Reprod Genet. 2013;30(5):609–15. doi:10.1007/s10815–013–9977–1.PubMedCentralPubMed Desai N, Ludgin J, Goldberg J, Falcone T. Development of a xeno-free non-contact co-culture system for derivation and maintenance of embryonic stem cells using a novel human endometrial cell line. J Assist Reprod Genet. 2013;30(5):609–15. doi:10.1007/s10815–013–9977–1.PubMedCentralPubMed
44.
go back to reference Chen HF, Chuang CY, Shieh YK, Chang HW, Ho HN, Kuo HC. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. Hum Reprod. 2009;24(5):1114–25. doi:10.1093/humrep/dep003.PubMed Chen HF, Chuang CY, Shieh YK, Chang HW, Ho HN, Kuo HC. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. Hum Reprod. 2009;24(5):1114–25. doi:10.1093/humrep/dep003.PubMed
45.
go back to reference Fu X, Toh WS, Liu H, Lu K, Li M, Hande MP, et al. Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Eng Part C Methods. 2010;16(4):719–33. doi:10.1089/ten.tec.2009.0360.PubMed Fu X, Toh WS, Liu H, Lu K, Li M, Hande MP, et al. Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Eng Part C Methods. 2010;16(4):719–33. doi:10.1089/ten.tec.2009.0360.PubMed
46.
go back to reference Abraham S, Sheridan SD, Laurent LC, Albert K, Stubban C, Ulitsky I, et al. Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system. Biochem Biophys Res Commun. 2010;393(2):211–6. doi:10.1016/j.bbrc.2010.01.101.PubMedCentralPubMed Abraham S, Sheridan SD, Laurent LC, Albert K, Stubban C, Ulitsky I, et al. Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system. Biochem Biophys Res Commun. 2010;393(2):211–6. doi:10.1016/j.bbrc.2010.01.101.PubMedCentralPubMed
47.
go back to reference Park Y, Kim JH, Lee SJ, Choi IY, Park SJ, Lee SR, et al. Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells Dev. 2011;20(11):1901–10. doi:10.1089/scd.2010.0496.PubMed Park Y, Kim JH, Lee SJ, Choi IY, Park SJ, Lee SR, et al. Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells Dev. 2011;20(11):1901–10. doi:10.1089/scd.2010.0496.PubMed
48.
go back to reference Liu CX, Zhang RL, Gao J, Li T, Ren Z, Zhou CQ, et al. Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol Reprod Dev. 2014; doi:10.1002/mrd.22312. Liu CX, Zhang RL, Gao J, Li T, Ren Z, Zhou CQ, et al. Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol Reprod Dev. 2014; doi:10.1002/mrd.22312.
49.
go back to reference Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118(Pt 19):4495–509. doi:10.1242/jcs.02553.PubMed Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118(Pt 19):4495–509. doi:10.1242/jcs.02553.PubMed
50.
go back to reference Albano RM, Groome N, Smith JC. Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development. 1993;117(2):711–23.PubMed Albano RM, Groome N, Smith JC. Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development. 1993;117(2):711–23.PubMed
51.
go back to reference Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells. 2005;23(4):489–95. doi:10.1634/stemcells. 2004–0279.PubMed Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells. 2005;23(4):489–95. doi:10.1634/stemcells. 2004–0279.PubMed
52.
go back to reference Chen S, Choo A, Chin A, Oh SK. TGF-beta2 allows pluripotent human embryonic stem cell proliferation on E6/E7 immortalized mouse embryonic fibroblasts. J Biotechnol. 2006;122(3):341–61. doi:10.1016/j.jbiotec.2005.11.022.PubMed Chen S, Choo A, Chin A, Oh SK. TGF-beta2 allows pluripotent human embryonic stem cell proliferation on E6/E7 immortalized mouse embryonic fibroblasts. J Biotechnol. 2006;122(3):341–61. doi:10.1016/j.jbiotec.2005.11.022.PubMed
53.
go back to reference James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132(6):1273–82. doi:10.1242/dev.01706.PubMed James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132(6):1273–82. doi:10.1242/dev.01706.PubMed
54.
go back to reference Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One. 2009;4(6):e6082. doi:10.1371/journal.pone.0006082.PubMedCentralPubMed Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One. 2009;4(6):e6082. doi:10.1371/journal.pone.0006082.PubMedCentralPubMed
55.
go back to reference Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res. 2012;8(1):97–108. doi:10.1016/j.scr.2011.08.005.PubMed Hongisto H, Vuoristo S, Mikhailova A, Suuronen R, Virtanen I, Otonkoski T, et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Res. 2012;8(1):97–108. doi:10.1016/j.scr.2011.08.005.PubMed
56.
go back to reference Kleinman HK. Preparation of basement membrane components from EHS tumors. Curr Protoc Cell Biol. 2001;Chapter 10:Unit 10 2. doi:10.1002/0471143030.cb1002s00.PubMed Kleinman HK. Preparation of basement membrane components from EHS tumors. Curr Protoc Cell Biol. 2001;Chapter 10:Unit 10 2. doi:10.1002/0471143030.cb1002s00.PubMed
57.
go back to reference Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 2004;13(6):585–97. doi:10.1089/scd.2004.13.585.PubMed Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 2004;13(6):585–97. doi:10.1089/scd.2004.13.585.PubMed
58.
go back to reference Hakala H, Rajala K, Ojala M, Panula S, Areva S, Kellomaki M, et al. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Eng Part A. 2009;15(7):1775–85. doi:10.1089/ten.tea.2008.0316.PubMed Hakala H, Rajala K, Ojala M, Panula S, Areva S, Kellomaki M, et al. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Eng Part A. 2009;15(7):1775–85. doi:10.1089/ten.tea.2008.0316.PubMed
59.
go back to reference Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells. 2006;24(3):568–74. doi:10.1634/stemcells. 2005–0247.PubMed Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells. 2006;24(3):568–74. doi:10.1634/stemcells. 2005–0247.PubMed
60.
go back to reference Montes R, Ligero G, Sanchez L, Catalina P, de la Cueva T, Nieto A, et al. Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res. 2009;19(6):698–709. doi:10.1038/cr.2009.35.PubMed Montes R, Ligero G, Sanchez L, Catalina P, de la Cueva T, Nieto A, et al. Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res. 2009;19(6):698–709. doi:10.1038/cr.2009.35.PubMed
61.
go back to reference Priddle H, Allegrucci C, Burridge P, Munoz M, Smith NM, Devlin L, et al. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2. In Vitro Cell Dev Biol Anim. 2010;46(3–4):367–75. doi:10.1007/s11626–010–9290–6.PubMed Priddle H, Allegrucci C, Burridge P, Munoz M, Smith NM, Devlin L, et al. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2. In Vitro Cell Dev Biol Anim. 2010;46(3–4):367–75. doi:10.1007/s11626–010–9290–6.PubMed
62.
go back to reference Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2(3):185–90. doi:10.1038/nmeth744.PubMed Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2(3):185–90. doi:10.1038/nmeth744.PubMed
63.
go back to reference Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A. 2006;103(18):6907–12. doi:10.1073/pnas.0602280103.PubMedCentralPubMed Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A. 2006;103(18):6907–12. doi:10.1073/pnas.0602280103.PubMedCentralPubMed
64.
go back to reference Carlson Scholz JA, Garg R, Compton SR, Allore HG, Zeiss CJ, Uchio EM. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. Comp Med. 2011;61(5):404–11.PubMed Carlson Scholz JA, Garg R, Compton SR, Allore HG, Zeiss CJ, Uchio EM. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. Comp Med. 2011;61(5):404–11.PubMed
65.
go back to reference Fu X, Toh WS, Liu H, Lu K, Li M, Cao T. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods. 2011;17(9):927–37. doi:10.1089/ten.TEC.2010.0735.PubMed Fu X, Toh WS, Liu H, Lu K, Li M, Cao T. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods. 2011;17(9):927–37. doi:10.1089/ten.TEC.2010.0735.PubMed
66.
go back to reference Ludwig T, AT J. Defined, feeder-independent medium for human embryonic stem cell culture. Curr Protoc Stem Cell Biol. 2007;Chapter 1:Unit 1C 2. doi:10.1002/9780470151808.sc01c02s2.PubMed Ludwig T, AT J. Defined, feeder-independent medium for human embryonic stem cell culture. Curr Protoc Stem Cell Biol. 2007;Chapter 1:Unit 1C 2. doi:10.1002/9780470151808.sc01c02s2.PubMed
67.
go back to reference Kidwai FK, Liu H, Toh WS, Fu X, Jokhun DS, Movahednia MM, et al. Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. J Invest Dermatol. 2013;133(3):618–28. doi:10.1038/jid.2012.384.PubMed Kidwai FK, Liu H, Toh WS, Fu X, Jokhun DS, Movahednia MM, et al. Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. J Invest Dermatol. 2013;133(3):618–28. doi:10.1038/jid.2012.384.PubMed
68.
go back to reference Wang Q, Mou X, Cao H, Meng Q, Ma Y, Han P, et al. A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture. Protein Cell. 2012;3(1):51–9. doi:10.1007/s13238–012–2002–0.PubMed Wang Q, Mou X, Cao H, Meng Q, Ma Y, Han P, et al. A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture. Protein Cell. 2012;3(1):51–9. doi:10.1007/s13238–012–2002–0.PubMed
69.
go back to reference Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod. 2004;70(3):837–45. doi:10.1095/biolreprod.103.021147.PubMed Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod. 2004;70(3):837–45. doi:10.1095/biolreprod.103.021147.PubMed
70.
go back to reference Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7. doi:10.1038/nbt1177.PubMed Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7. doi:10.1038/nbt1177.PubMed
71.
go back to reference Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 2010;28(6):611–5. doi:10.1038/nbt.1620.PubMed Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 2010;28(6):611–5. doi:10.1038/nbt.1620.PubMed
72.
go back to reference Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun. 2008;375(1):27–32. doi:10.1016/j.bbrc.2008.07.111.PubMed Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun. 2008;375(1):27–32. doi:10.1016/j.bbrc.2008.07.111.PubMed
73.
go back to reference Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 2012;3:1236. doi:10.1038/ncomms2231.PubMedCentralPubMed Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 2012;3:1236. doi:10.1038/ncomms2231.PubMedCentralPubMed
74.
go back to reference Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594. doi:10.1038/srep03594.PubMedCentralPubMed Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594. doi:10.1038/srep03594.PubMedCentralPubMed
75.
go back to reference Whittard JD, Craig SE, Mould AP, Koch A, Pertz O, Engel J, et al. E-cadherin is a ligand for integrin alpha2beta1. Matrix Biol. 2002;21(6):525–32.PubMed Whittard JD, Craig SE, Mould AP, Koch A, Pertz O, Engel J, et al. E-cadherin is a ligand for integrin alpha2beta1. Matrix Biol. 2002;21(6):525–32.PubMed
76.
go back to reference Li L, Bennett SA, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr. 2012;6(1):59–70. doi:10.4161/cam.19583.PubMedCentralPubMed Li L, Bennett SA, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr. 2012;6(1):59–70. doi:10.4161/cam.19583.PubMedCentralPubMed
77.
go back to reference Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, et al. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells. 2010;28(2):247–57. doi:10.1002/stem.289.PubMed Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, et al. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells. 2010;28(2):247–57. doi:10.1002/stem.289.PubMed
78.
go back to reference Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A. 2010;107(18):8129–34. doi:10.1073/pnas.1002024107.PubMedCentralPubMed Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A. 2010;107(18):8129–34. doi:10.1073/pnas.1002024107.PubMedCentralPubMed
79.
go back to reference Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol. 2010;10:60. doi:10.1186/1471–213X–10–60.PubMedCentralPubMed Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol. 2010;10:60. doi:10.1186/1471–213X–10–60.PubMedCentralPubMed
80.
go back to reference Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 2014;5:3195. doi:10.1038/ncomms4195.PubMed Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 2014;5:3195. doi:10.1038/ncomms4195.PubMed
81.
go back to reference Tsutsui H, Valamehr B, Hindoyan A, Qiao R, Ding X, Guo S, et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun. 2011;2:167. doi:10.1038/ncomms1165.PubMedCentralPubMed Tsutsui H, Valamehr B, Hindoyan A, Qiao R, Ding X, Guo S, et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun. 2011;2:167. doi:10.1038/ncomms1165.PubMedCentralPubMed
82.
go back to reference Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells. 2008;26(9):2257–65. doi:10.1634/stemcells. 2008–0291.PubMed Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells. 2008;26(9):2257–65. doi:10.1634/stemcells. 2008–0291.PubMed
83.
go back to reference Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8(5):424–9. doi:10.1038/nmeth.1593.PubMedCentralPubMed Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8(5):424–9. doi:10.1038/nmeth.1593.PubMedCentralPubMed
84.
go back to reference Hasegawa K, Yasuda SY, Teo JL, Nguyen C, McMillan M, Hsieh CL, et al. Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med. 2012;1(1):18–28. doi:10.5966/sctm. 2011–0033.PubMedCentralPubMed Hasegawa K, Yasuda SY, Teo JL, Nguyen C, McMillan M, Hsieh CL, et al. Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med. 2012;1(1):18–28. doi:10.5966/sctm. 2011–0033.PubMedCentralPubMed
85.
go back to reference Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013;11(3):1103–16. doi:10.1016/j.scr.2013.07.011.PubMed Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013;11(3):1103–16. doi:10.1016/j.scr.2013.07.011.PubMed
86.
go back to reference Cai L, Ye Z, Zhou BY, Mali P, Zhou C, Cheng L. Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res. 2007;17(1):62–72. doi:10.1038/sj.cr.7310138.PubMed Cai L, Ye Z, Zhou BY, Mali P, Zhou C, Cheng L. Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res. 2007;17(1):62–72. doi:10.1038/sj.cr.7310138.PubMed
87.
go back to reference Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell. 2010;6(6):521–31. doi:10.1016/j.stem.2010.05.010.PubMed Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell. 2010;6(6):521–31. doi:10.1016/j.stem.2010.05.010.PubMed
88.
go back to reference Miki T, Yasuda SY, Kahn M. Wnt/beta-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev. 2011;7(4):836–46. doi:10.1007/s12015–011–9275–1.PubMed Miki T, Yasuda SY, Kahn M. Wnt/beta-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev. 2011;7(4):836–46. doi:10.1007/s12015–011–9275–1.PubMed
89.
go back to reference Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol. 2010;28(6):606–10. doi:10.1038/nbt.1629.PubMed Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol. 2010;28(6):606–10. doi:10.1038/nbt.1629.PubMed
90.
go back to reference Jin S, Yao H, Weber JL, Melkoumian ZK, Ye K. A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One. 2012;7(11):e50880. doi:10.1371/journal.pone.0050880.PubMedCentralPubMed Jin S, Yao H, Weber JL, Melkoumian ZK, Ye K. A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One. 2012;7(11):e50880. doi:10.1371/journal.pone.0050880.PubMedCentralPubMed
91.
go back to reference Kawase E. Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate. Methods Mol Biol. 2014; May30 Epub, doi:10.1007/7651_2014_82. Kawase E. Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate. Methods Mol Biol. 2014; May30 Epub, doi:10.1007/7651_2014_82.
92.
go back to reference Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods. 2010;7(12):989–94. doi:10.1038/nmeth.1532.PubMedCentralPubMed Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods. 2010;7(12):989–94. doi:10.1038/nmeth.1532.PubMedCentralPubMed
93.
go back to reference Wu S, Johansson J, Damdimopoulou P, Shahsavani M, Falk A, Hovatta O, et al. Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials. 2014;35(30):8496–502. doi:10.1016/j.biomaterials.2014.06.039.PubMed Wu S, Johansson J, Damdimopoulou P, Shahsavani M, Falk A, Hovatta O, et al. Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials. 2014;35(30):8496–502. doi:10.1016/j.biomaterials.2014.06.039.PubMed
94.
go back to reference Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31(34):9135–44. doi:10.1016/j.biomaterials.2010.08.007.PubMedCentralPubMed Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31(34):9135–44. doi:10.1016/j.biomaterials.2010.08.007.PubMedCentralPubMed
95.
go back to reference Irwin EF, Gupta R, Dashti DC, Healy KE. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32(29):6912–9. doi:10.1016/j.biomaterials.2011.05.058.PubMedCentralPubMed Irwin EF, Gupta R, Dashti DC, Healy KE. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32(29):6912–9. doi:10.1016/j.biomaterials.2011.05.058.PubMedCentralPubMed
96.
go back to reference Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater. 2010;9(9):768–78. doi:10.1038/nmat2812.PubMedCentralPubMed Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater. 2010;9(9):768–78. doi:10.1038/nmat2812.PubMedCentralPubMed
97.
go back to reference Nandivada H, Villa-Diaz LG, O’Shea KS, Smith GD, Krebsbach PH, Lahann J. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat Protoc. 2011;6(7):1037–43. doi:10.1038/nprot.2011.342.PubMedCentralPubMed Nandivada H, Villa-Diaz LG, O’Shea KS, Smith GD, Krebsbach PH, Lahann J. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat Protoc. 2011;6(7):1037–43. doi:10.1038/nprot.2011.342.PubMedCentralPubMed
98.
go back to reference Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol. 2010;28(6):581–3. doi:10.1038/nbt.1631.PubMedCentralPubMed Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol. 2010;28(6):581–3. doi:10.1038/nbt.1631.PubMedCentralPubMed
99.
go back to reference Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 2013;31(1):1–7. doi:10.1002/stem.1260.PubMedCentralPubMed Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 2013;31(1):1–7. doi:10.1002/stem.1260.PubMedCentralPubMed
100.
go back to reference Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A. 2008;105(36):13409–14. doi:10.1073/pnas.0806136105.PubMedCentralPubMed Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A. 2008;105(36):13409–14. doi:10.1073/pnas.0806136105.PubMedCentralPubMed
101.
go back to reference Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng. 2005;91(6):688–98. doi:10.1002/bit.20536.PubMed Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng. 2005;91(6):688–98. doi:10.1002/bit.20536.PubMed
102.
go back to reference Frank S, Zhang M, Scholer HR, Greber B. Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PLoS One. 2012;7(7):e41958. doi:10.1371/journal.pone.0041958.PubMedCentralPubMed Frank S, Zhang M, Scholer HR, Greber B. Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PLoS One. 2012;7(7):e41958. doi:10.1371/journal.pone.0041958.PubMedCentralPubMed
103.
go back to reference van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, et al. Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro. 2010;24(4):1053–63. doi:10.1016/j.tiv.2010.03.016.PubMed van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, et al. Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro. 2010;24(4):1053–63. doi:10.1016/j.tiv.2010.03.016.PubMed
104.
go back to reference Wang Y, Cheng L, Gerecht S. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann Biomed Eng. 2014;42(7):1357–72. doi:10.1007/s10439–013–0921–4.PubMed Wang Y, Cheng L, Gerecht S. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann Biomed Eng. 2014;42(7):1357–72. doi:10.1007/s10439–013–0921–4.PubMed
105.
go back to reference Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004;166(6):877–87. doi:10.1083/jcb.200405004.PubMedCentralPubMed Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004;166(6):877–87. doi:10.1083/jcb.200405004.PubMedCentralPubMed
106.
go back to reference Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79(1):144–52. doi:10.1016/S0006–3495(00)76279–5.PubMedCentralPubMed Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79(1):144–52. doi:10.1016/S0006–3495(00)76279–5.PubMedCentralPubMed
107.
go back to reference Yeung T, Georges P, Flanagan L, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60(1):24–34.PubMed Yeung T, Georges P, Flanagan L, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60(1):24–34.PubMed
108.
go back to reference Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods. 2011;8(9):731–6. doi:10.1038/nmeth.1671.PubMed Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods. 2011;8(9):731–6. doi:10.1038/nmeth.1671.PubMed
109.
go back to reference Dellatore SM, Garcia AS, Miller WM. Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol. 2008;19(5):534–40. doi:10.1016/j.copbio.2008.07.010.PubMedCentralPubMed Dellatore SM, Garcia AS, Miller WM. Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol. 2008;19(5):534–40. doi:10.1016/j.copbio.2008.07.010.PubMedCentralPubMed
110.
go back to reference Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. doi:10.1016/j.cell.2006.06.044.PubMed Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. doi:10.1016/j.cell.2006.06.044.PubMed
111.
112.
go back to reference Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433–41. doi:10.1038/nature08602.PubMedCentralPubMed Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433–41. doi:10.1038/nature08602.PubMedCentralPubMed
113.
go back to reference Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303. doi:10.1073/pnas.0703723104.PubMedCentralPubMed Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303. doi:10.1073/pnas.0703723104.PubMedCentralPubMed
114.
go back to reference Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials. 2010;31(3):404–12. doi:10.1016/j.biomaterials.2009.09.070.PubMed Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials. 2010;31(3):404–12. doi:10.1016/j.biomaterials.2009.09.070.PubMed
115.
go back to reference Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC. A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials. 2012;33(8):2419–30. doi:10.1016/j.biomaterials.2011.11.077.PubMed Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC. A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials. 2012;33(8):2419–30. doi:10.1016/j.biomaterials.2011.11.077.PubMed
116.
go back to reference Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials. 2008;29(29):3946–52. doi:10.1016/j.biomaterials.2008.04.027.PubMed Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials. 2008;29(29):3946–52. doi:10.1016/j.biomaterials.2008.04.027.PubMed
117.
go back to reference Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 2014;23(4):380–92. doi:10.1089/scd.2013.0314.PubMedCentralPubMed Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 2014;23(4):380–92. doi:10.1089/scd.2013.0314.PubMedCentralPubMed
118.
go back to reference Jang M, Lee ST, Kim JW, Yang JH, Yoon JK, Park JC, et al. A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials. 2013;34(14):3571–80. doi:10.1016/j.biomaterials.2013.01.073.PubMed Jang M, Lee ST, Kim JW, Yang JH, Yoon JK, Park JC, et al. A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials. 2013;34(14):3571–80. doi:10.1016/j.biomaterials.2013.01.073.PubMed
119.
go back to reference Lee ST, Yun JI, Jo YS, Mochizuki M, van der Vlies AJ, Kontos S, et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials. 2010;31(6):1219–26. doi:10.1016/j.biomaterials.2009.10.054.PubMed Lee ST, Yun JI, Jo YS, Mochizuki M, van der Vlies AJ, Kontos S, et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials. 2010;31(6):1219–26. doi:10.1016/j.biomaterials.2009.10.054.PubMed
120.
go back to reference Badenes SM, Fernandes TG, Rodrigues CA, Diogo MM, Cabral JM. Scalable expansion of human-induced pluripotent stem cells in xeno-free microcarriers. Methods Mol Biol. 2015;1283:23–9. doi:10.1007/7651_2014_106.PubMed Badenes SM, Fernandes TG, Rodrigues CA, Diogo MM, Cabral JM. Scalable expansion of human-induced pluripotent stem cells in xeno-free microcarriers. Methods Mol Biol. 2015;1283:23–9. doi:10.1007/7651_2014_106.PubMed
121.
go back to reference Chen AK, Chen X, Choo AB, Reuveny S, Oh SK. Expansion of human embryonic stem cells on cellulose microcarriers. Curr Protoc Stem Cell Biol. 2010;Chapter 1:Unit 1C 11. doi:10.1002/9780470151808.sc01c11s14.PubMed Chen AK, Chen X, Choo AB, Reuveny S, Oh SK. Expansion of human embryonic stem cells on cellulose microcarriers. Curr Protoc Stem Cell Biol. 2010;Chapter 1:Unit 1C 11. doi:10.1002/9780470151808.sc01c11s14.PubMed
122.
go back to reference Chen AK, Chen X, Choo AB, Reuveny S, Oh SK. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 2011;7(2):97–111. doi:10.1016/j.scr.2011.04.007.PubMed Chen AK, Chen X, Choo AB, Reuveny S, Oh SK. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 2011;7(2):97–111. doi:10.1016/j.scr.2011.04.007.PubMed
123.
go back to reference Marinho PA, Vareschini DT, Gomes IC, Paulsen Bda S, Furtado DR, Castilho Ldos R, et al. Xeno-free production of human embryonic stem cells in stirred microcarrier systems using a novel animal/human-component-free medium. Tissue Eng Part C Methods. 2013;19(2):146–55. doi:10.1089/ten.TEC.2012.0141.PubMed Marinho PA, Vareschini DT, Gomes IC, Paulsen Bda S, Furtado DR, Castilho Ldos R, et al. Xeno-free production of human embryonic stem cells in stirred microcarrier systems using a novel animal/human-component-free medium. Tissue Eng Part C Methods. 2013;19(2):146–55. doi:10.1089/ten.TEC.2012.0141.PubMed
124.
go back to reference Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog. 2009;25(1):20–31. doi:10.1002/btpr.110.PubMedCentralPubMed Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog. 2009;25(1):20–31. doi:10.1002/btpr.110.PubMedCentralPubMed
125.
go back to reference Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2009;2(3):219–30. doi:10.1016/j.scr.2009.02.005.PubMed Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2009;2(3):219–30. doi:10.1016/j.scr.2009.02.005.PubMed
126.
go back to reference Serra M, Correia C, Malpique R, Brito C, Jensen J, Bjorquist P, et al. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One. 2011;6(8):e23212. doi:10.1371/journal.pone.0023212.PubMedCentralPubMed Serra M, Correia C, Malpique R, Brito C, Jensen J, Bjorquist P, et al. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One. 2011;6(8):e23212. doi:10.1371/journal.pone.0023212.PubMedCentralPubMed
127.
go back to reference Want AJ, Nienow AW, Hewitt CJ, Coopman K. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen Med. 2012;7(1):71–84. doi:10.2217/rme.11.101.PubMed Want AJ, Nienow AW, Hewitt CJ, Coopman K. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen Med. 2012;7(1):71–84. doi:10.2217/rme.11.101.PubMed
128.
go back to reference Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 2010;28(4):361–4. doi:10.1038/nbt.1616.PubMed Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 2010;28(4):361–4. doi:10.1038/nbt.1616.PubMed
129.
go back to reference Baharvand H, Larijani MR, Yousefi M. Protocol for expansion of undifferentiated human embryonic and pluripotent stem cells in suspension. Methods Mol Biol. 2012;873:217–26. doi:10.1007/978–1–61779–794–1_13.PubMed Baharvand H, Larijani MR, Yousefi M. Protocol for expansion of undifferentiated human embryonic and pluripotent stem cells in suspension. Methods Mol Biol. 2012;873:217–26. doi:10.1007/978–1–61779–794–1_13.PubMed
130.
go back to reference Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc. 2011;6(5):572–9. doi:10.1038/nprot.2011.325.PubMed Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc. 2011;6(5):572–9. doi:10.1038/nprot.2011.325.PubMed
131.
go back to reference Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep. 2014;2(5):734–45. doi:10.1016/j.stemcr.2014.03.012. Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep. 2014;2(5):734–45. doi:10.1016/j.stemcr.2014.03.012.
132.
go back to reference Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G, et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell. 2008;3(6):607–9. doi:10.1016/j.stem.2008.11.009.PubMed Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G, et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell. 2008;3(6):607–9. doi:10.1016/j.stem.2008.11.009.PubMed
133.
go back to reference Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell. 2007;1(5):490–4. doi:10.1016/j.stem.2007.10.004.PubMed Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell. 2007;1(5):490–4. doi:10.1016/j.stem.2007.10.004.PubMed
134.
go back to reference Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet. 2008;17(R1):R48–53. doi:10.1093/hmg/ddn079.PubMed Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet. 2008;17(R1):R48–53. doi:10.1093/hmg/ddn079.PubMed
135.
go back to reference Couture LA. Scalable pluripotent stem cell culture. Nat Biotechnol. 2010;28(6):562–3. doi:10.1038/nbt0610–562.PubMed Couture LA. Scalable pluripotent stem cell culture. Nat Biotechnol. 2010;28(6):562–3. doi:10.1038/nbt0610–562.PubMed
136.
go back to reference Geron C. World’s first clinical trial of human embryonic stem cell therapy cleared. Regen Med. 2009;4(2):161. Geron C. World’s first clinical trial of human embryonic stem cell therapy cleared. Regen Med. 2009;4(2):161.
137.
go back to reference Strauss S. Geron trial resumes, but standards for stem cell trials remain elusive. Nat Biotechnol. 2010;28(10):989–90. doi:10.1038/nbt1010–989.PubMed Strauss S. Geron trial resumes, but standards for stem cell trials remain elusive. Nat Biotechnol. 2010;28(10):989–90. doi:10.1038/nbt1010–989.PubMed
138.
go back to reference Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. doi:10.1016/S0140–6736(12)60028–2.PubMed Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. doi:10.1016/S0140–6736(12)60028–2.PubMed
139.
go back to reference Ratcliffe E, Glen KE, Naing MW, Williams DJ. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull. 2013;108:73–94. doi:10.1093/bmb/ldt034.PubMed Ratcliffe E, Glen KE, Naing MW, Williams DJ. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull. 2013;108:73–94. doi:10.1093/bmb/ldt034.PubMed
140.
go back to reference Alper J. Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol. 2009;27(3):213–4. doi:10.1038/nbt0309–213a.PubMed Alper J. Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol. 2009;27(3):213–4. doi:10.1038/nbt0309–213a.PubMed
141.
go back to reference Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52. doi:10.1186/1741–7015–9–52.PubMedCentralPubMed Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52. doi:10.1186/1741–7015–9–52.PubMedCentralPubMed
142.
go back to reference Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694–705. doi:10.1523/JNEUROSCI. 0311–05.2005.PubMed Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694–705. doi:10.1523/JNEUROSCI. 0311–05.2005.PubMed
145.
go back to reference Menendez P, Bueno C, Wang L, Bhatia M. Human embryonic stem cells: potential tool for achieving immunotolerance? Stem Cell Rev. 2005;1(2):151–8. doi:10.1385/SCR:1:2:151.PubMed Menendez P, Bueno C, Wang L, Bhatia M. Human embryonic stem cells: potential tool for achieving immunotolerance? Stem Cell Rev. 2005;1(2):151–8. doi:10.1385/SCR:1:2:151.PubMed
146.
go back to reference Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25. doi:10.1016/S0140–6736(05)67813–0.PubMed Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25. doi:10.1016/S0140–6736(05)67813–0.PubMed
147.
go back to reference Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24–32. doi:10.1016/j.tibtech.2006.10.010.PubMed Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24–32. doi:10.1016/j.tibtech.2006.10.010.PubMed
148.
go back to reference Desai N, Xu J, Tsulaia T, Szeptycki-Lawson J, AbdelHafez F, Goldfarb J, et al. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential? J Assist Reprod Genet. 2011;28(2):93–9. doi:10.1007/s10815–010–9500-x.PubMedCentralPubMed Desai N, Xu J, Tsulaia T, Szeptycki-Lawson J, AbdelHafez F, Goldfarb J, et al. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential? J Assist Reprod Genet. 2011;28(2):93–9. doi:10.1007/s10815–010–9500-x.PubMedCentralPubMed
Metadata
Title
Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems
Authors
Nina Desai
Pooja Rambhia
Arsela Gishto
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2015
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-015-0005-4

Other articles of this Issue 1/2015

Reproductive Biology and Endocrinology 1/2015 Go to the issue