Skip to main content
Top
Published in: Clinical and Molecular Allergy 1/2018

Open Access 01-12-2018 | Review

Biological clocks: their relevance to immune-allergic diseases

Authors: Roberto Paganelli, Claudia Petrarca, Mario Di Gioacchino

Published in: Clinical and Molecular Allergy | Issue 1/2018

Login to get access

Abstract

The 2017 Nobel Prize for Physiology or Medicine, awarded for the discoveries made in the past 15 years on the genetic and molecular mechanisms regulating many physiological functions, has renewed the attention to the importance of circadian rhythms. These originate from a central pacemaker in the suprachiasmatic nucleus in the brain, photoentrained via direct connection with melanopsin containing, intrinsically light-sensitive retinal ganglion cells, and it projects to periphery, thus creating an inner circadian rhythm. This regulates several activities, including sleep, feeding times, energy metabolism, endocrine and immune functions. Disturbances of these rhythms, mainly of wake/sleep, hormonal secretion and feeding, cause decrease in quality of life, as well as being involved in development of obesity, metabolic syndrome and neuropsychiatric disorders. Most immunological functions, from leukocyte numbers, activity and cytokine secretion undergo circadian variations, which might affect susceptibility to infections. The intensity of symptoms and disease severity show a 24 h pattern in many immunological and allergic diseases, including rheumatoid arthritis, bronchial asthma, atopic eczema and chronic urticaria. This is accompanied by altered sleep duration and quality, a major determinant of quality of life. Shift work and travel through time zones as well as artificial light pose new health threats by disrupting the circadian rhythms. Finally, the field of chronopharmacology uses these concepts for delivering drugs in synchrony with biological rhythms.
Literature
2.
go back to reference Callaway E, Ledford H. Medicine Nobel awarded for work on circadian clocks. Nature. 2017;550(7674):18.PubMedCrossRef Callaway E, Ledford H. Medicine Nobel awarded for work on circadian clocks. Nature. 2017;550(7674):18.PubMedCrossRef
3.
4.
go back to reference Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body’s circadian clock network with external time. BioEssays. 2015;37(10):1119–28.PubMedPubMedCentralCrossRef Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body’s circadian clock network with external time. BioEssays. 2015;37(10):1119–28.PubMedPubMedCentralCrossRef
6.
go back to reference Geiger SS, Fagundes CT, Siegel RM. Chrono-immunology: progress and challenges in understanding links between the circadian and immune systems. Immunology. 2015;146(3):349–58.PubMedPubMedCentralCrossRef Geiger SS, Fagundes CT, Siegel RM. Chrono-immunology: progress and challenges in understanding links between the circadian and immune systems. Immunology. 2015;146(3):349–58.PubMedPubMedCentralCrossRef
8.
go back to reference Zarrinpar A, Chaix A, Panda S. Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab. 2016;27(2):69–83.PubMedCrossRef Zarrinpar A, Chaix A, Panda S. Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab. 2016;27(2):69–83.PubMedCrossRef
9.
go back to reference Van Gelder RN, Buhr ED. Ocular photoreception for circadian rhythm entrainment in mammals. Annu Rev Vis Sci. 2016;2:153–69.PubMedCrossRef Van Gelder RN, Buhr ED. Ocular photoreception for circadian rhythm entrainment in mammals. Annu Rev Vis Sci. 2016;2:153–69.PubMedCrossRef
10.
go back to reference Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS ONE. 2016;11(12):e0168651.PubMedPubMedCentralCrossRef Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS ONE. 2016;11(12):e0168651.PubMedPubMedCentralCrossRef
11.
go back to reference Hall JC. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr Opin Neurobiol. 2000;10(4):456–66.PubMedCrossRef Hall JC. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr Opin Neurobiol. 2000;10(4):456–66.PubMedCrossRef
12.
go back to reference Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003;112(3):329–41.PubMedCrossRef Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003;112(3):329–41.PubMedCrossRef
14.
go back to reference Young MW, Jackson FR, Shin HS, Bargiello TA. A biological clock in Drosophila. In: Cold Spring Harbor symposia quantitative biology, vol. 50; 1985. p. 865–75. Young MW, Jackson FR, Shin HS, Bargiello TA. A biological clock in Drosophila. In: Cold Spring Harbor symposia quantitative biology, vol. 50; 1985. p. 865–75.
15.
go back to reference Rosbash M, Hall JC. Biological clocks in Drosophila: finding the molecules that make them tick. Cell. 1985;43(1):3–4.PubMedCrossRef Rosbash M, Hall JC. Biological clocks in Drosophila: finding the molecules that make them tick. Cell. 1985;43(1):3–4.PubMedCrossRef
16.
go back to reference Hardin PE, Hall JC, Rosbash M. Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci USA. 1992;89(24):11711–5.PubMedPubMedCentralCrossRef Hardin PE, Hall JC, Rosbash M. Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci USA. 1992;89(24):11711–5.PubMedPubMedCentralCrossRef
17.
go back to reference Hardin PE, Hall JC, Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990;343(6258):536–40.PubMedCrossRef Hardin PE, Hall JC, Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990;343(6258):536–40.PubMedCrossRef
18.
go back to reference Young MW. Life’s 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem Sci. 2000;25(12):601–6.PubMedCrossRef Young MW. Life’s 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem Sci. 2000;25(12):601–6.PubMedCrossRef
19.
go back to reference Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 2006;40:409–48.PubMedCrossRef Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 2006;40:409–48.PubMedCrossRef
20.
go back to reference Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.PubMedCrossRef Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.PubMedCrossRef
21.
go back to reference Menet JS, Abruzzi KC, Desrochers J, Rodriguez J, Rosbash M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 2010;24(4):358–67.PubMedPubMedCentralCrossRef Menet JS, Abruzzi KC, Desrochers J, Rodriguez J, Rosbash M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 2010;24(4):358–67.PubMedPubMedCentralCrossRef
22.
go back to reference Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102(12):4143–5.PubMedCrossRef Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102(12):4143–5.PubMedCrossRef
23.
26.
go back to reference Young MW. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu Rev Biochem. 1998;67:135–52.PubMedCrossRef Young MW. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu Rev Biochem. 1998;67:135–52.PubMedCrossRef
28.
29.
go back to reference Spies CM, Hoff P, Mazuch J, Gaber T, Maier B, Strehl C, et al. Circadian rhythms of cellular immunity in rheumatoid arthritis: a hypothesis-generating study. Clin Exp Rheumatol. 2015;33(1):34–43.PubMed Spies CM, Hoff P, Mazuch J, Gaber T, Maier B, Strehl C, et al. Circadian rhythms of cellular immunity in rheumatoid arthritis: a hypothesis-generating study. Clin Exp Rheumatol. 2015;33(1):34–43.PubMed
31.
go back to reference Smolensky MH, Portaluppi F, Manfredini R, Hermida RC, Tiseo R, Sackett-Lundeen LL, et al. Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med Rev. 2015;21:12–22.PubMedCrossRef Smolensky MH, Portaluppi F, Manfredini R, Hermida RC, Tiseo R, Sackett-Lundeen LL, et al. Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med Rev. 2015;21:12–22.PubMedCrossRef
32.
go back to reference Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, et al. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int. 2013;30(7):870–88.PubMedCrossRef Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, et al. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int. 2013;30(7):870–88.PubMedCrossRef
33.
go back to reference Labrecque N, Cermakian N. Circadian clocks in the immune system. J Biol Rhythms. 2015;30(4):277–90.PubMedCrossRef Labrecque N, Cermakian N. Circadian clocks in the immune system. J Biol Rhythms. 2015;30(4):277–90.PubMedCrossRef
34.
go back to reference Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med. 1960;103:142–4.PubMedCrossRef Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med. 1960;103:142–4.PubMedCrossRef
35.
go back to reference Zhou M, Wang W, Karapetyan S, Mwimba M, Marques J, Buchler NE, et al. Redox rhythm reinforces the circadian clock to gate immune response. Nature. 2015;523(7561):472–6.PubMedPubMedCentralCrossRef Zhou M, Wang W, Karapetyan S, Mwimba M, Marques J, Buchler NE, et al. Redox rhythm reinforces the circadian clock to gate immune response. Nature. 2015;523(7561):472–6.PubMedPubMedCentralCrossRef
36.
go back to reference Mavroudis PD, Scheff JD, Calvano SE, Androulakis IP. Systems biology of circadian-immune interactions. J Innate Immun. 2013;5(2):153–62.PubMedCrossRef Mavroudis PD, Scheff JD, Calvano SE, Androulakis IP. Systems biology of circadian-immune interactions. J Innate Immun. 2013;5(2):153–62.PubMedCrossRef
37.
go back to reference Lasselin J, Rehman JU, Akerstedt T, Lekander M, Axelsson J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav Immun. 2015;47:93–9.PubMedCrossRef Lasselin J, Rehman JU, Akerstedt T, Lekander M, Axelsson J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav Immun. 2015;47:93–9.PubMedCrossRef
38.
go back to reference Ackermann K, Revell VL, Lao O, Rombouts EJ, Skene DJ, Kayser M. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep. 2012;35(7):933–40.PubMedPubMedCentralCrossRef Ackermann K, Revell VL, Lao O, Rombouts EJ, Skene DJ, Kayser M. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. Sleep. 2012;35(7):933–40.PubMedPubMedCentralCrossRef
39.
go back to reference Gamaldo CE, Spira AP, Hock RS, Salas RE, McArthur JC, David PM, et al. Sleep, function and HIV: a multi-method assessment. AIDS Behav. 2013;17(8):2808–15.PubMedPubMedCentralCrossRef Gamaldo CE, Spira AP, Hock RS, Salas RE, McArthur JC, David PM, et al. Sleep, function and HIV: a multi-method assessment. AIDS Behav. 2013;17(8):2808–15.PubMedPubMedCentralCrossRef
40.
go back to reference Clark JP 3rd, Sampair CS, Kofuji P, Nath A, Ding JM. HIV protein, transactivator of transcription, alters circadian rhythms through the light entrainment pathway. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R656–62.PubMedCrossRef Clark JP 3rd, Sampair CS, Kofuji P, Nath A, Ding JM. HIV protein, transactivator of transcription, alters circadian rhythms through the light entrainment pathway. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R656–62.PubMedCrossRef
41.
go back to reference Wang T, Jiang Z, Hou W, Li Z, Cheng S, Green LA, et al. HIV Tat protein affects circadian rhythmicity by interfering with the circadian system. HIV Med. 2014;15(9):565–70.PubMedPubMedCentralCrossRef Wang T, Jiang Z, Hou W, Li Z, Cheng S, Green LA, et al. HIV Tat protein affects circadian rhythmicity by interfering with the circadian system. HIV Med. 2014;15(9):565–70.PubMedPubMedCentralCrossRef
42.
go back to reference Hartmann FJ, Bernard-Valnet R, Queriault C, Mrdjen D, Weber LM, Galli E, et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med. 2016;213(12):2621–33.PubMedPubMedCentralCrossRef Hartmann FJ, Bernard-Valnet R, Queriault C, Mrdjen D, Weber LM, Galli E, et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med. 2016;213(12):2621–33.PubMedPubMedCentralCrossRef
43.
go back to reference Cutolo M, Buttgereit F, Straub RH. Regulation of glucocorticoids by the central nervous system. Clin Exp Rheumatol. 2011;29(5 Suppl 68):S-19–22. Cutolo M, Buttgereit F, Straub RH. Regulation of glucocorticoids by the central nervous system. Clin Exp Rheumatol. 2011;29(5 Suppl 68):S-19–22.
45.
go back to reference Straub RH, Detert J, Dziurla R, Fietze I, Loeschmann PA, Burmester GR, et al. Inflammation is an important covariate for the crosstalk of sleep and the HPA axis in rheumatoid arthritis. NeuroImmunoModulation. 2017;24(1):11–20.PubMedCrossRef Straub RH, Detert J, Dziurla R, Fietze I, Loeschmann PA, Burmester GR, et al. Inflammation is an important covariate for the crosstalk of sleep and the HPA axis in rheumatoid arthritis. NeuroImmunoModulation. 2017;24(1):11–20.PubMedCrossRef
46.
go back to reference Spies CM, Straub RH, Cutolo M, Buttgereit F. Circadian rhythms in rheumatology—a glucocorticoid perspective. Arthritis Res Ther. 2014;16(Suppl 2):S3.PubMedPubMedCentralCrossRef Spies CM, Straub RH, Cutolo M, Buttgereit F. Circadian rhythms in rheumatology—a glucocorticoid perspective. Arthritis Res Ther. 2014;16(Suppl 2):S3.PubMedPubMedCentralCrossRef
47.
go back to reference Buttgereit F, Smolen JS, Coogan AN, Cajochen C. Clocking in: chronobiology in rheumatoid arthritis. Nat Rev Rheumatol. 2015;11(6):349–56.PubMedCrossRef Buttgereit F, Smolen JS, Coogan AN, Cajochen C. Clocking in: chronobiology in rheumatoid arthritis. Nat Rev Rheumatol. 2015;11(6):349–56.PubMedCrossRef
48.
go back to reference La Morgia C, Ross-Cisneros FN, Sadun AA, Carelli V. Retinal ganglion cells and circadian rhythms in Alzheimer’s disease, Parkinson’s disease, and beyond. Front Neurol. 2017;8:162.PubMedPubMedCentralCrossRef La Morgia C, Ross-Cisneros FN, Sadun AA, Carelli V. Retinal ganglion cells and circadian rhythms in Alzheimer’s disease, Parkinson’s disease, and beyond. Front Neurol. 2017;8:162.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Menet JS, Rosbash M. When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol. 2011;21(6):849–57.PubMedPubMedCentralCrossRef Menet JS, Rosbash M. When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol. 2011;21(6):849–57.PubMedPubMedCentralCrossRef
51.
go back to reference Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, et al. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis. 2017;3:9.PubMedPubMedCentralCrossRef Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, et al. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis. 2017;3:9.PubMedPubMedCentralCrossRef
52.
go back to reference Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol. 2016;9(7):1066–74.PubMedPubMedCentral Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol. 2016;9(7):1066–74.PubMedPubMedCentral
53.
go back to reference Schwartsburd PM. Catabolic and anabolic faces of insulin resistance and their disorders: a new insight into circadian control of metabolic disorders leading to diabetes. Future Sci OA. 2017;3(3):FSO201.PubMedPubMedCentralCrossRef Schwartsburd PM. Catabolic and anabolic faces of insulin resistance and their disorders: a new insight into circadian control of metabolic disorders leading to diabetes. Future Sci OA. 2017;3(3):FSO201.PubMedPubMedCentralCrossRef
54.
go back to reference Levin AM, Wang Y, Wells KE, Padhukasahasram B, Yang JJ, Burchard EG, et al. Nocturnal asthma and the importance of race/ethnicity and genetic ancestry. Am J Respir Crit Care Med. 2014;190(3):266–73.PubMedPubMedCentral Levin AM, Wang Y, Wells KE, Padhukasahasram B, Yang JJ, Burchard EG, et al. Nocturnal asthma and the importance of race/ethnicity and genetic ancestry. Am J Respir Crit Care Med. 2014;190(3):266–73.PubMedPubMedCentral
55.
go back to reference Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock-coupled lung cellular and molecular functions in chronic airway diseases. Am J Respir Cell Mol Biol. 2015;53(3):285–90.PubMedPubMedCentralCrossRef Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock-coupled lung cellular and molecular functions in chronic airway diseases. Am J Respir Cell Mol Biol. 2015;53(3):285–90.PubMedPubMedCentralCrossRef
56.
go back to reference Saito J, Gibeon D, Macedo P, Menzies-Gow A, Bhavsar PK, Chung KF. Domiciliary diurnal variation of exhaled nitric oxide fraction for asthma control. Eur Respir J. 2014;43(2):474–84.PubMedCrossRef Saito J, Gibeon D, Macedo P, Menzies-Gow A, Bhavsar PK, Chung KF. Domiciliary diurnal variation of exhaled nitric oxide fraction for asthma control. Eur Respir J. 2014;43(2):474–84.PubMedCrossRef
57.
go back to reference Krouse HJ, Yarandi H, McIntosh J, Cowen C, Selim V. Assessing sleep quality and daytime wakefulness in asthma using wrist actigraphy. J Asthma. 2008;45(5):389–95.PubMedCrossRef Krouse HJ, Yarandi H, McIntosh J, Cowen C, Selim V. Assessing sleep quality and daytime wakefulness in asthma using wrist actigraphy. J Asthma. 2008;45(5):389–95.PubMedCrossRef
58.
go back to reference Ferraz E, Borges MC, Vianna EO. Influence of nocturnal asthma on chronotype. J Asthma. 2008;45(10):911–5.PubMedCrossRef Ferraz E, Borges MC, Vianna EO. Influence of nocturnal asthma on chronotype. J Asthma. 2008;45(10):911–5.PubMedCrossRef
59.
go back to reference Durrington HJ, Farrow SN, Loudon AS, Ray DW. The circadian clock and asthma. Thorax. 2014;69(1):90–2.PubMedCrossRef Durrington HJ, Farrow SN, Loudon AS, Ray DW. The circadian clock and asthma. Thorax. 2014;69(1):90–2.PubMedCrossRef
60.
go back to reference Sukumaran S, Jusko WJ, Dubois DC, Almon RR. Light-dark oscillations in the lung transcriptome: implications for lung homeostasis, repair, metabolism, disease, and drug action. J Appl Physiol (1985). 2011;110(6):1732–47.CrossRef Sukumaran S, Jusko WJ, Dubois DC, Almon RR. Light-dark oscillations in the lung transcriptome: implications for lung homeostasis, repair, metabolism, disease, and drug action. J Appl Physiol (1985). 2011;110(6):1732–47.CrossRef
61.
go back to reference Zaslona Z, Case S, Early JO, Lalor SJ, McLoughlin RM, Curtis AM, et al. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2017;312(6):L855–60.PubMedCrossRef Zaslona Z, Case S, Early JO, Lalor SJ, McLoughlin RM, Curtis AM, et al. The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2017;312(6):L855–60.PubMedCrossRef
62.
go back to reference Esnault S, Fang Y, Kelly EA, Sedgwick JB, Fine J, Malter JS, et al. Circadian changes in granulocyte-macrophage colony-stimulating factor message in circulating eosinophils. Ann Allergy Asthma Immunol. 2007;98(1):75–82.PubMedCrossRef Esnault S, Fang Y, Kelly EA, Sedgwick JB, Fine J, Malter JS, et al. Circadian changes in granulocyte-macrophage colony-stimulating factor message in circulating eosinophils. Ann Allergy Asthma Immunol. 2007;98(1):75–82.PubMedCrossRef
63.
go back to reference Nakao A, Nakamura Y, Shibata S. The circadian clock functions as a potent regulator of allergic reaction. Allergy. 2015;70(5):467–73.PubMedCrossRef Nakao A, Nakamura Y, Shibata S. The circadian clock functions as a potent regulator of allergic reaction. Allergy. 2015;70(5):467–73.PubMedCrossRef
64.
go back to reference Ando N, Nakamura Y, Ishimaru K, Ogawa H, Okumura K, Shimada S, et al. Allergen-specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis. Allergy. 2015;70(3):319–22.PubMedCrossRef Ando N, Nakamura Y, Ishimaru K, Ogawa H, Okumura K, Shimada S, et al. Allergen-specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis. Allergy. 2015;70(3):319–22.PubMedCrossRef
65.
go back to reference Fidan V, Alp HH, Gozeler M, Karaaslan O, Binay O, Cingi C. Variance of melatonin and cortisol rhythm in patients with allergic rhinitis. Am J Otolaryngol. 2013;34(5):416–9.PubMedCrossRef Fidan V, Alp HH, Gozeler M, Karaaslan O, Binay O, Cingi C. Variance of melatonin and cortisol rhythm in patients with allergic rhinitis. Am J Otolaryngol. 2013;34(5):416–9.PubMedCrossRef
66.
go back to reference Gonzalez-Nunez V, Valero AL, Mullol J. Impact of sleep as a specific marker of quality of life in allergic rhinitis. Curr Allergy Asthma Rep. 2013;13(2):131–41.PubMedCrossRef Gonzalez-Nunez V, Valero AL, Mullol J. Impact of sleep as a specific marker of quality of life in allergic rhinitis. Curr Allergy Asthma Rep. 2013;13(2):131–41.PubMedCrossRef
67.
go back to reference Honma A, Yamada Y, Nakamaru Y, Fukuda S, Honma K, Honma S. Glucocorticoids reset the nasal circadian clock in mice. Endocrinology. 2015;156(11):4302–11.PubMedCrossRef Honma A, Yamada Y, Nakamaru Y, Fukuda S, Honma K, Honma S. Glucocorticoids reset the nasal circadian clock in mice. Endocrinology. 2015;156(11):4302–11.PubMedCrossRef
68.
go back to reference Camfferman D, Kennedy JD, Gold M, Martin AJ, Lushington K. Eczema and sleep and its relationship to daytime functioning in children. Sleep Med Rev. 2010;14(6):359–69.PubMedCrossRef Camfferman D, Kennedy JD, Gold M, Martin AJ, Lushington K. Eczema and sleep and its relationship to daytime functioning in children. Sleep Med Rev. 2010;14(6):359–69.PubMedCrossRef
69.
go back to reference Fishbein AB, Vitaterna O, Haugh IM, Bavishi AA, Zee PC, Turek FW, et al. Nocturnal eczema: review of sleep and circadian rhythms in children with atopic dermatitis and future research directions. J Allergy Clin Immunol. 2015;136(5):1170–7.PubMedCrossRef Fishbein AB, Vitaterna O, Haugh IM, Bavishi AA, Zee PC, Turek FW, et al. Nocturnal eczema: review of sleep and circadian rhythms in children with atopic dermatitis and future research directions. J Allergy Clin Immunol. 2015;136(5):1170–7.PubMedCrossRef
70.
go back to reference Takita E, Yokota S, Tahara Y, Hirao A, Aoki N, Nakamura Y, et al. Biological clock dysfunction exacerbates contact hypersensitivity in mice. Br J Dermatol. 2013;168(1):39–46.PubMedCrossRef Takita E, Yokota S, Tahara Y, Hirao A, Aoki N, Nakamura Y, et al. Biological clock dysfunction exacerbates contact hypersensitivity in mice. Br J Dermatol. 2013;168(1):39–46.PubMedCrossRef
71.
go back to reference Stull D, McBride D, Tian H, Gimenez Arnau A, Maurer M, Marsland A, et al. Analysis of disease activity categories in chronic spontaneous/idiopathic urticaria. Br J Dermatol. 2017;177:1093–101.PubMedCrossRef Stull D, McBride D, Tian H, Gimenez Arnau A, Maurer M, Marsland A, et al. Analysis of disease activity categories in chronic spontaneous/idiopathic urticaria. Br J Dermatol. 2017;177:1093–101.PubMedCrossRef
72.
go back to reference Maurer M, Abuzakouk M, Berard F, Canonica W, Oude Elberink H, Gimenez-Arnau A, et al. The burden of chronic spontaneous urticaria is substantial: real-world evidence from ASSURE-CSU. Allergy. 2017;72:2005–16.PubMedPubMedCentralCrossRef Maurer M, Abuzakouk M, Berard F, Canonica W, Oude Elberink H, Gimenez-Arnau A, et al. The burden of chronic spontaneous urticaria is substantial: real-world evidence from ASSURE-CSU. Allergy. 2017;72:2005–16.PubMedPubMedCentralCrossRef
73.
go back to reference Friedman BS, Steinberg SC, Meggs WJ, Kaliner MA, Frieri M, Metcalfe DD. Analysis of plasma histamine levels in patients with mast cell disorders. Am J Med. 1989;87(6):649–54.PubMedCrossRef Friedman BS, Steinberg SC, Meggs WJ, Kaliner MA, Frieri M, Metcalfe DD. Analysis of plasma histamine levels in patients with mast cell disorders. Am J Med. 1989;87(6):649–54.PubMedCrossRef
74.
go back to reference Grattan CE, Dawn G, Gibbs S, Francis DM. Blood basophil numbers in chronic ordinary urticaria and healthy controls: diurnal variation, influence of loratadine and prednisolone and relationship to disease activity. Clin Exp Allergy. 2003;33(3):337–41.PubMedCrossRef Grattan CE, Dawn G, Gibbs S, Francis DM. Blood basophil numbers in chronic ordinary urticaria and healthy controls: diurnal variation, influence of loratadine and prednisolone and relationship to disease activity. Clin Exp Allergy. 2003;33(3):337–41.PubMedCrossRef
75.
go back to reference Nakamura Y, Nakano N, Ishimaru K, Ando N, Katoh R, Suzuki-Inoue K, et al. Inhibition of IgE-mediated allergic reactions by pharmacologically targeting the circadian clock. J Allergy Clin Immunol. 2016;137(4):1226–35.PubMedCrossRef Nakamura Y, Nakano N, Ishimaru K, Ando N, Katoh R, Suzuki-Inoue K, et al. Inhibition of IgE-mediated allergic reactions by pharmacologically targeting the circadian clock. J Allergy Clin Immunol. 2016;137(4):1226–35.PubMedCrossRef
76.
go back to reference Ando N, Nakamura Y, Aoki R, Ishimaru K, Ogawa H, Okumura K, et al. Circadian gene clock regulates Psoriasis-like skin inflammation in mice. J Investig Dermatol. 2015;135(12):3001–8.PubMedPubMedCentralCrossRef Ando N, Nakamura Y, Aoki R, Ishimaru K, Ogawa H, Okumura K, et al. Circadian gene clock regulates Psoriasis-like skin inflammation in mice. J Investig Dermatol. 2015;135(12):3001–8.PubMedPubMedCentralCrossRef
Metadata
Title
Biological clocks: their relevance to immune-allergic diseases
Authors
Roberto Paganelli
Claudia Petrarca
Mario Di Gioacchino
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Clinical and Molecular Allergy / Issue 1/2018
Electronic ISSN: 1476-7961
DOI
https://doi.org/10.1186/s12948-018-0080-0

Other articles of this Issue 1/2018

Clinical and Molecular Allergy 1/2018 Go to the issue