Skip to main content
Top
Published in: Cardiovascular Ultrasound 1/2022

Open Access 01-12-2022 | Research

Left atrial contraction strain and controlled preload alterations, a study in healthy individuals

Authors: Peter Gottfridsson, Roman A’Roch, Per Lindqvist, Lucy Law, Tomi Myrberg, Magnus Hultin, Alexander A’Roch, Michael Haney

Published in: Cardiovascular Ultrasound | Issue 1/2022

Login to get access

Abstract

Background

In order to assess left atrial contractile function in disturbed circulatory conditions, it is necessary to have a clear understanding of how it behaves in a normal resting state with changes in loading conditions. However, currently the understanding of this relationship is incomplete. We hypothesize that in healthy individuals, left atrial contraction strain and its peak strain rate are increased or decreased by increasing or decreasing preload, respectively.

Methods

Controlled maneuvers used to change preload included continuous positive airway pressure by mask (CPAP 20 cmH2O) for preload decrease, and passive leg raise (15 degrees angle) for preload increase. Cardiac ultrasound 4-chamber views of the left atria and left ventricle were acquired at baseline and during maneuver. Acquired images were post processed and analyzed offline. Comparisons were made using paired t-test and means with 95% confidence interval.

Results

There were 38 participants, complete results were obtained from 23 in the CPAP maneuver and 27 in the passive leg raise maneuver. For the CPAP group, left atrial contraction strain was 11.6% (10.1 to 13.1) at baseline and 12.8% (11.0 to 14.6) during the maneuver (p = 0.16). Left atrial contraction peak strain rate was − 1.7 s− 1 (− 1.8 to − 1.5) at baseline and − 1.8 s− 1 (− 2.0 to − 1.6) during the maneuver (p = 0.29). For the passive leg raise-group, left atrial contraction strain was 10.1% (9.0 to 11.2) at baseline and 10.8% (9.4 to 12.3) during the maneuver (p = 0.28). Left atrial contraction peak strain rate was − 1.5 s− 1 (− 1.6 to − 1.4) at baseline and − 1.6 s− 1 (− 1.8 to − 1.5) during the maneuver (p = 0.29). Left atrial area, an indicator of preload, increased significantly during passive leg raise and decreased during CPAP.

Conclusion

In healthy individuals, left atrial contraction strain and its peak strain rate seem to be preload-independent.

Trial registration

The study was 2018-02-19 registered at clinicaltrials.gov (NCT03436030).
Appendix
Available only for authorised users
Literature
1.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRef
2.
go back to reference Smiseth OA, Baron T, Marino PN, Marwick TH, Flachskampf FA. Imaging of the left atrium: pathophysiology insights and clinical utility. Eur Heart J Cardiovas Imaging. 2021;23:2–13.CrossRef Smiseth OA, Baron T, Marino PN, Marwick TH, Flachskampf FA. Imaging of the left atrium: pathophysiology insights and clinical utility. Eur Heart J Cardiovas Imaging. 2021;23:2–13.CrossRef
3.
go back to reference Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19(6):591–600.CrossRef Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19(6):591–600.CrossRef
4.
go back to reference Inoue K, Khan FH, Remme EW, Ohte N, García-Izquierdo E, Chetrit M, et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur Heart J Cardiovasc Imaging. 2021;23:61–70.CrossRef Inoue K, Khan FH, Remme EW, Ohte N, García-Izquierdo E, Chetrit M, et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur Heart J Cardiovasc Imaging. 2021;23:61–70.CrossRef
5.
go back to reference Genovese D, Singh A, Volpato V, Kruse E, Weinert L, Yamat M, et al. Load dependency of left atrial strain in Normal subjects. J Am Soc Echocardiogr. 2018;31(11):1221–8.CrossRef Genovese D, Singh A, Volpato V, Kruse E, Weinert L, Yamat M, et al. Load dependency of left atrial strain in Normal subjects. J Am Soc Echocardiogr. 2018;31(11):1221–8.CrossRef
6.
go back to reference Howard-Quijano K, Anderson-Dam J, McCabe M, Hall M, Mazor E, Mahajan A. Speckle-tracking strain imaging identifies alterations in left atrial mechanics with general anesthesia and positive-pressure ventilation. J Cardiothorac Vasc Anesth. 2015;29(4):845–51.CrossRef Howard-Quijano K, Anderson-Dam J, McCabe M, Hall M, Mazor E, Mahajan A. Speckle-tracking strain imaging identifies alterations in left atrial mechanics with general anesthesia and positive-pressure ventilation. J Cardiothorac Vasc Anesth. 2015;29(4):845–51.CrossRef
7.
go back to reference Park CS, Kim YK, Song HC, Choi EJ, Ihm SH, Kim HY, et al. Effect of preload on left atrial function: evaluated by tissue Doppler and strain imaging. Eur Heart J Cardiovasc Imaging. 2012;13(11):938–47.CrossRef Park CS, Kim YK, Song HC, Choi EJ, Ihm SH, Kim HY, et al. Effect of preload on left atrial function: evaluated by tissue Doppler and strain imaging. Eur Heart J Cardiovasc Imaging. 2012;13(11):938–47.CrossRef
8.
go back to reference Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009;35(1):85–90.CrossRef Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009;35(1):85–90.CrossRef
9.
go back to reference Cournand A, Motley HL. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Phys. 1948;152(1):162–74.CrossRef Cournand A, Motley HL. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Phys. 1948;152(1):162–74.CrossRef
10.
go back to reference Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1–11.CrossRef Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1–11.CrossRef
11.
go back to reference Obokata M, Negishi K, Kurosawa K, Arima H, Tateno R, Ui G, et al. Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2013;6(7):749–58.CrossRef Obokata M, Negishi K, Kurosawa K, Arima H, Tateno R, Ui G, et al. Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2013;6(7):749–58.CrossRef
12.
go back to reference Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, et al. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(1):40–56.CrossRef Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, et al. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(1):40–56.CrossRef
13.
go back to reference Sun BJ, Park JH, Lee M, Choi JO, Lee JH, Shin MS, et al. Normal reference values for left atrial strain and its determinants from a large Korean multicenter registry. J Cardiovasc Imaging. 2020;28(3):186–98.CrossRef Sun BJ, Park JH, Lee M, Choi JO, Lee JH, Shin MS, et al. Normal reference values for left atrial strain and its determinants from a large Korean multicenter registry. J Cardiovasc Imaging. 2020;28(3):186–98.CrossRef
14.
go back to reference Lindqvist P, Henein M. Left atrial strain rate during atrial contraction predicts raised pulmonary capillary wedge pressure: evidence for left atrio-ventricular interaction. Int J Cardiovasc Imaging. 2021;37(5):1529–38.CrossRef Lindqvist P, Henein M. Left atrial strain rate during atrial contraction predicts raised pulmonary capillary wedge pressure: evidence for left atrio-ventricular interaction. Int J Cardiovasc Imaging. 2021;37(5):1529–38.CrossRef
Metadata
Title
Left atrial contraction strain and controlled preload alterations, a study in healthy individuals
Authors
Peter Gottfridsson
Roman A’Roch
Per Lindqvist
Lucy Law
Tomi Myrberg
Magnus Hultin
Alexander A’Roch
Michael Haney
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cardiovascular Ultrasound / Issue 1/2022
Electronic ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-022-00278-1

Other articles of this Issue 1/2022

Cardiovascular Ultrasound 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine