Skip to main content
Top
Published in: Molecular Cancer 1/2019

Open Access 01-12-2019 | Metastasis | Review

Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance

Authors: Ladan Mashouri, Hassan Yousefi, Amir Reza Aref, Ali mohammad Ahadi, Fatemeh Molaei, Suresh K. Alahari

Published in: Molecular Cancer | Issue 1/2019

Login to get access

Abstract

Tumor-derived exosomes (TDEs) participate in formation and progression of different cancer processes, including tumor microenvironment (TME) remodeling, angiogenesis, invasion, metastasis and drug-resistance. Exosomes initiate or suppress various signaling pathways in the recipient cells via transmitting heterogeneous cargoes. In this review we discuss exosome biogenesis, exosome mediated metastasis and chemoresistance. Furthermore, tumor derived exosomes role in tumor microenvironment remodeling, and angiogenesis is reviewed. Also, exosome induction of epithelial mesenchymal transition (EMT) is highlighted. More importantly, we discuss extensively how exosomes regulate drug resistance in several cancers. Thus, understanding exosome biogenesis, their contents and the molecular mechanisms and signaling pathways that are responsible for metastasis and drug-resistance mediated by TDEs may help to devise novel therapeutic approaches for cancer progression particularly to overcome therapy-resistance and preventing metastasis as major factors of cancer mortality.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest. 2016;126(4):1139–43.PubMedPubMedCentralCrossRef Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest. 2016;126(4):1139–43.PubMedPubMedCentralCrossRef
2.
go back to reference Salido-Guadarrama I, et al. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. OncoTargets Ther. 2014;7:1327. Salido-Guadarrama I, et al. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. OncoTargets Ther. 2014;7:1327.
3.
go back to reference Zhang H-G, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184(1):28–41.PubMedPubMedCentralCrossRef Zhang H-G, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184(1):28–41.PubMedPubMedCentralCrossRef
5.
go back to reference Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.PubMedCrossRef Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.PubMedCrossRef
6.
go back to reference Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.PubMedPubMedCentralCrossRef Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.PubMedPubMedCentralCrossRef
7.
go back to reference Riches A, et al. Regulation of exosome release from mammary epithelial and breast cancer cells–a new regulatory pathway. Eur J Cancer. 2014;50(5):1025–34.PubMedCrossRef Riches A, et al. Regulation of exosome release from mammary epithelial and breast cancer cells–a new regulatory pathway. Eur J Cancer. 2014;50(5):1025–34.PubMedCrossRef
8.
9.
go back to reference Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 2009;23(23):2675–99.PubMedPubMedCentralCrossRef Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 2009;23(23):2675–99.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Pierce GB, Shikes RH, Fink LM. Cancer: a problem of developmental biology. Englewood Cliffs, New Jersey: Prentice Hall; 1978. Pierce GB, Shikes RH, Fink LM. Cancer: a problem of developmental biology. Englewood Cliffs, New Jersey: Prentice Hall; 1978.
12.
go back to reference Deep G, Panigrahi GK. Hypoxia-induced signaling promotes prostate cancer progression: exosomes role as messenger of hypoxic response in tumor microenvironment. Crit Rev Oncog. 2015;20:5–6.CrossRef Deep G, Panigrahi GK. Hypoxia-induced signaling promotes prostate cancer progression: exosomes role as messenger of hypoxic response in tumor microenvironment. Crit Rev Oncog. 2015;20:5–6.CrossRef
13.
go back to reference Zhang H-G, Grizzle WE. Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res. 2011;17:959–64. Zhang H-G, Grizzle WE. Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res. 2011;17:959–64.
14.
go back to reference DeCosse JJ, et al. Breast cancer: induction of differentiation by embryonic tissue. Science. 1973;181(4104):1057–8.PubMedCrossRef DeCosse JJ, et al. Breast cancer: induction of differentiation by embryonic tissue. Science. 1973;181(4104):1057–8.PubMedCrossRef
15.
go back to reference Fujii H, Cunha GR, Norman JT. The induction of adenocarcinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inductor. J Urol. 1982;128(4):858–61.PubMedCrossRef Fujii H, Cunha GR, Norman JT. The induction of adenocarcinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inductor. J Urol. 1982;128(4):858–61.PubMedCrossRef
16.
go back to reference Hannafon BN, Ding W-Q. Cancer stem cells and exosome signaling. Stem Cell Invest. 2015;2:112015. Hannafon BN, Ding W-Q. Cancer stem cells and exosome signaling. Stem Cell Invest. 2015;2:112015.
18.
go back to reference Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.PubMed Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.PubMed
19.
go back to reference Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–88.PubMedCrossRef Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–88.PubMedCrossRef
21.
22.
go back to reference Camussi G, et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98.PubMed Camussi G, et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98.PubMed
23.
go back to reference Van Niel G, et al. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140(1):13–21.PubMedCrossRef Van Niel G, et al. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140(1):13–21.PubMedCrossRef
24.
go back to reference Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654.PubMedCrossRef Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654.PubMedCrossRef
25.
go back to reference Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20.CrossRef Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20.CrossRef
27.
go back to reference Poliakov A, et al. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009;69(2):159–67.PubMedCrossRef Poliakov A, et al. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009;69(2):159–67.PubMedCrossRef
28.
go back to reference Vidal M, et al. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of Guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol. 1989;140(3):455–62.PubMedCrossRef Vidal M, et al. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of Guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol. 1989;140(3):455–62.PubMedCrossRef
29.
go back to reference Chu Z, Witte DP, Qi X. Saposin C–LBPA interaction in late-endosomes/lysosomes. Exp Cell Res. 2005;303(2):300–7.PubMedCrossRef Chu Z, Witte DP, Qi X. Saposin C–LBPA interaction in late-endosomes/lysosomes. Exp Cell Res. 2005;303(2):300–7.PubMedCrossRef
32.
go back to reference Laulagnier K, et al. Mast cell-and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;380(1):161–71.PubMedPubMedCentralCrossRef Laulagnier K, et al. Mast cell-and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;380(1):161–71.PubMedPubMedCentralCrossRef
34.
go back to reference Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol. 2006;176(3):1534–42.PubMedCrossRef Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol. 2006;176(3):1534–42.PubMedCrossRef
36.
go back to reference Keller S, et al. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.PubMedCrossRef Keller S, et al. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.PubMedCrossRef
37.
go back to reference Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 2007;8(8):603.PubMedCrossRef Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 2007;8(8):603.PubMedCrossRef
39.
go back to reference Kobayashi H, et al. Hrs, a mammalian master molecule in vesicular transport and protein-sorting, suppresses the degradation of ESCRT proteins STAM1 and STAM2. J Biol Chem. 2005;280:10468–77. Kobayashi H, et al. Hrs, a mammalian master molecule in vesicular transport and protein-sorting, suppresses the degradation of ESCRT proteins STAM1 and STAM2. J Biol Chem. 2005;280:10468–77.
40.
go back to reference Colombo M, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.PubMedCrossRef Colombo M, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.PubMedCrossRef
41.
go back to reference McGough IJ, Vincent J-P. Exosomes in developmental signalling. Development. 2016;143(14):2482–93.PubMedCrossRef McGough IJ, Vincent J-P. Exosomes in developmental signalling. Development. 2016;143(14):2482–93.PubMedCrossRef
43.
go back to reference Yeates EFA, Tesco G. The endosomal-associated deubiquitinating enzyme USP8 regulates BACE1 ubiquitination and degradation. J Biol Chem. 2016;291:15753–66. Yeates EFA, Tesco G. The endosomal-associated deubiquitinating enzyme USP8 regulates BACE1 ubiquitination and degradation. J Biol Chem. 2016;291:15753–66.
44.
go back to reference Baietti MF, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677.PubMedCrossRef Baietti MF, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677.PubMedCrossRef
45.
go back to reference Theos AC, et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell. 2006;10(3):343–54.PubMedPubMedCentralCrossRef Theos AC, et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell. 2006;10(3):343–54.PubMedPubMedCentralCrossRef
47.
go back to reference Van Niel G, et al. The tetraspanin CD63 regulates ESCRT-independent and-dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708–21.PubMedPubMedCentralCrossRef Van Niel G, et al. The tetraspanin CD63 regulates ESCRT-independent and-dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21(4):708–21.PubMedPubMedCentralCrossRef
48.
go back to reference Kumar B, et al. Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta. 2016;1863(3):464–70.PubMedCrossRef Kumar B, et al. Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta. 2016;1863(3):464–70.PubMedCrossRef
49.
go back to reference Ostrowski M, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19.PubMedCrossRef Ostrowski M, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19.PubMedCrossRef
51.
go back to reference Record M, et al. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171–82.PubMedCrossRef Record M, et al. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171–82.PubMedCrossRef
52.
53.
54.
go back to reference Roma-Rodrigues C, et al. Smuggling gold nanoparticles across cell types–a new role for exosomes in gene silencing. Nanomedicine. 2017;13(4):1389–98.PubMedCrossRef Roma-Rodrigues C, et al. Smuggling gold nanoparticles across cell types–a new role for exosomes in gene silencing. Nanomedicine. 2017;13(4):1389–98.PubMedCrossRef
55.
go back to reference Simpson RJ, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.PubMedCrossRef Simpson RJ, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.PubMedCrossRef
56.
go back to reference Sung BH, et al. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164.PubMedCrossRef Sung BH, et al. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun. 2015;6:7164.PubMedCrossRef
57.
go back to reference Koumangoye RB, et al. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One. 2011;6(9):e24234.PubMedPubMedCentralCrossRef Koumangoye RB, et al. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One. 2011;6(9):e24234.PubMedPubMedCentralCrossRef
59.
go back to reference Luga V, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.PubMedCrossRef Luga V, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56.PubMedCrossRef
62.
go back to reference Zeng Z, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.PubMedPubMedCentralCrossRef Zeng Z, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.PubMedPubMedCentralCrossRef
63.
go back to reference Webber J, et al. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30. Webber J, et al. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30.
64.
go back to reference Zhang Q, Peng C. Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett. 2018;15(1):691–8.PubMed Zhang Q, Peng C. Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett. 2018;15(1):691–8.PubMed
65.
go back to reference Richards KE, et al. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36(13):1770.PubMedCrossRef Richards KE, et al. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36(13):1770.PubMedCrossRef
67.
go back to reference Syn N, et al. Exosome-mediated metastasis: from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606–17.PubMedCrossRef Syn N, et al. Exosome-mediated metastasis: from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606–17.PubMedCrossRef
69.
go back to reference Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRef Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.PubMedCrossRef
70.
go back to reference Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Rev Clin Oncol. 2008;5(4):194.CrossRef Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Rev Clin Oncol. 2008;5(4):194.CrossRef
71.
go back to reference Momeny M, et al. Anti-tumour activity of tivozanib, a pan-inhibitor of VEGF receptors, in therapy-resistant ovarian carcinoma cells. Sci Rep. 2017;7:45954.PubMedPubMedCentralCrossRef Momeny M, et al. Anti-tumour activity of tivozanib, a pan-inhibitor of VEGF receptors, in therapy-resistant ovarian carcinoma cells. Sci Rep. 2017;7:45954.PubMedPubMedCentralCrossRef
72.
go back to reference Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks. Int J Mol Med. 2013;32(4):763–7.PubMedPubMedCentralCrossRef Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks. Int J Mol Med. 2013;32(4):763–7.PubMedPubMedCentralCrossRef
75.
go back to reference Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470.PubMedPubMedCentralCrossRef Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470.PubMedPubMedCentralCrossRef
76.
go back to reference Gesierich S, et al. Systemic induction of the angiogenesis switch by the tetraspanin D6. 1A/CO-029. Cancer Res. 2006;66(14):7083–94.PubMedCrossRef Gesierich S, et al. Systemic induction of the angiogenesis switch by the tetraspanin D6. 1A/CO-029. Cancer Res. 2006;66(14):7083–94.PubMedCrossRef
77.
go back to reference Monteforte A, et al. Glioblastoma exosomes for therapeutic angiogenesis in peripheral ischemia. Tissue Eng A. 2017;23(21–22):1251–61.CrossRef Monteforte A, et al. Glioblastoma exosomes for therapeutic angiogenesis in peripheral ischemia. Tissue Eng A. 2017;23(21–22):1251–61.CrossRef
78.
go back to reference Qiu J-J, et al. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian Cancer. Int J Biol Sci. 2018;14(14):1960.PubMedPubMedCentralCrossRef Qiu J-J, et al. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian Cancer. Int J Biol Sci. 2018;14(14):1960.PubMedPubMedCentralCrossRef
79.
go back to reference Ludwig N, et al. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol Cancer Res. 2018;16(11):1798–808.PubMedCrossRef Ludwig N, et al. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol Cancer Res. 2018;16(11):1798–808.PubMedCrossRef
81.
go back to reference Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009;1796(2):293–308.PubMed Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009;1796(2):293–308.PubMed
84.
go back to reference Whiteside TL. The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Transl Cancer Res. 2017;6(1):S90–2.CrossRefPubMed Whiteside TL. The role of tumor-derived exosomes in epithelial mesenchymal transition (EMT). Transl Cancer Res. 2017;6(1):S90–2.CrossRefPubMed
85.
go back to reference Jeppesen DK, et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics. 2014;14(6):699–712.PubMedCrossRef Jeppesen DK, et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics. 2014;14(6):699–712.PubMedCrossRef
86.
go back to reference Yoshizaki T, et al. Pathogenic role of Epstein–Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. Cancer Lett. 2013;337(1):1–7.PubMedCrossRef Yoshizaki T, et al. Pathogenic role of Epstein–Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. Cancer Lett. 2013;337(1):1–7.PubMedCrossRef
87.
go back to reference Wang X, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2018;78:4586–98. Wang X, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2018;78:4586–98.
88.
89.
go back to reference Hendrix A, et al. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst. 2010;102(12):866–80.PubMedPubMedCentralCrossRef Hendrix A, et al. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst. 2010;102(12):866–80.PubMedPubMedCentralCrossRef
90.
go back to reference He M, et al. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis. 2015;36(9):1008–18.PubMedCrossRef He M, et al. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis. 2015;36(9):1008–18.PubMedCrossRef
91.
go back to reference Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. J Nat Med. 2012;18(6):883.CrossRef Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. J Nat Med. 2012;18(6):883.CrossRef
92.
go back to reference Franzen C, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis. 2015;4(8):e163.PubMedPubMedCentralCrossRef Franzen C, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis. 2015;4(8):e163.PubMedPubMedCentralCrossRef
93.
go back to reference Sánchez CA, et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. J Oncotarget. 2016;7(4):3993. Sánchez CA, et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. J Oncotarget. 2016;7(4):3993.
94.
go back to reference Huang L, et al. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res. 2016;35(1):27.PubMedPubMedCentralCrossRef Huang L, et al. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res. 2016;35(1):27.PubMedPubMedCentralCrossRef
95.
go back to reference Wei F, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 2017;16(1):132.PubMedPubMedCentralCrossRef Wei F, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 2017;16(1):132.PubMedPubMedCentralCrossRef
96.
go back to reference Ding J, et al. Exosome-mediated miR-222 transferring: an insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res. 2018;369(1):129–38.PubMedCrossRef Ding J, et al. Exosome-mediated miR-222 transferring: an insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res. 2018;369(1):129–38.PubMedCrossRef
98.
go back to reference Di Vizio D, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573–84.PubMedPubMedCentralCrossRef Di Vizio D, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573–84.PubMedPubMedCentralCrossRef
99.
go back to reference Fu Q, et al. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene. 2018;37(47):6105.PubMedPubMedCentralCrossRef Fu Q, et al. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene. 2018;37(47):6105.PubMedPubMedCentralCrossRef
100.
go back to reference Safaei R, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 2005;4(10):1595–604.PubMedCrossRef Safaei R, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 2005;4(10):1595–604.PubMedCrossRef
101.
go back to reference Shedden K, et al. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003;63(15):4331–7.PubMed Shedden K, et al. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003;63(15):4331–7.PubMed
102.
go back to reference Corrado C, et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013;14(3):5338–66.PubMedPubMedCentralCrossRef Corrado C, et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013;14(3):5338–66.PubMedPubMedCentralCrossRef
103.
go back to reference Du B, Shim JS. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7):965.PubMedCentralCrossRef Du B, Shim JS. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7):965.PubMedCentralCrossRef
106.
go back to reference Wang M, et al. Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p. Int J Oncol. 2019;54(1):326–38.PubMed Wang M, et al. Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p. Int J Oncol. 2019;54(1):326–38.PubMed
107.
go back to reference Lobb RJ, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Cancer. 2017;141(3):614–20.PubMedCrossRef Lobb RJ, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Cancer. 2017;141(3):614–20.PubMedCrossRef
108.
go back to reference Zeng A, et al. Tumour exosomes from cells harbouring PTPRZ1–MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene. 2017;36(38):5369.PubMedPubMedCentralCrossRef Zeng A, et al. Tumour exosomes from cells harbouring PTPRZ1–MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene. 2017;36(38):5369.PubMedPubMedCentralCrossRef
109.
go back to reference Wilson T, Johnston P, Longley D. Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets. 2009;9(3):307–19.PubMedCrossRef Wilson T, Johnston P, Longley D. Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets. 2009;9(3):307–19.PubMedCrossRef
110.
go back to reference Dong H, et al. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol. 2018;53(3):1013–26.PubMedPubMedCentral Dong H, et al. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol. 2018;53(3):1013–26.PubMedPubMedCentral
111.
go back to reference Jing C, et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 2018;15(6):9811–7.PubMedPubMedCentral Jing C, et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 2018;15(6):9811–7.PubMedPubMedCentral
112.
go back to reference Fu X, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J Exp Clin Cancer Res. 2018;37(1):52.PubMedPubMedCentralCrossRef Fu X, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J Exp Clin Cancer Res. 2018;37(1):52.PubMedPubMedCentralCrossRef
113.
go back to reference Liu T, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim Biophys Sin. 2017;49(9):808–16.PubMedCrossRef Liu T, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim Biophys Sin. 2017;49(9):808–16.PubMedCrossRef
114.
go back to reference Zhang S, et al. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Braz J Med Biol Res. 2017;51(1):e6472. Zhang S, et al. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Braz J Med Biol Res. 2017;51(1):e6472.
115.
go back to reference Vella LJ, et al. Intercellular resistance to BRAF inhibition can be mediated by extracellular vesicle–associated PDGFRβ. Neoplasia. 2017;19(11):932–40.PubMedPubMedCentralCrossRef Vella LJ, et al. Intercellular resistance to BRAF inhibition can be mediated by extracellular vesicle–associated PDGFRβ. Neoplasia. 2017;19(11):932–40.PubMedPubMedCentralCrossRef
116.
go back to reference Fornari F, et al. In hepatocellular carcinoma miR-221 modulates Sorafenib resistance through inhibition of caspase-3 mediated apoptosis. Clin Cancer Res. 2017;23(14):3953–65. Fornari F, et al. In hepatocellular carcinoma miR-221 modulates Sorafenib resistance through inhibition of caspase-3 mediated apoptosis. Clin Cancer Res. 2017;23(14):3953–65.
117.
118.
go back to reference Muralidharan-Chari V, et al. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells. Oncotarget. 2016;7(31):50365.PubMedPubMedCentralCrossRef Muralidharan-Chari V, et al. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells. Oncotarget. 2016;7(31):50365.PubMedPubMedCentralCrossRef
119.
go back to reference Binenbaum Y, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 2018;78(18):5287–99.PubMedCrossRef Binenbaum Y, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 2018;78(18):5287–99.PubMedCrossRef
120.
go back to reference Ning K, et al. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol. 2017;115(8):932–40.PubMedCrossRef Ning K, et al. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol. 2017;115(8):932–40.PubMedCrossRef
121.
go back to reference Yang S-J, et al. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene. 2017;623:5–14.PubMedCrossRef Yang S-J, et al. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene. 2017;623:5–14.PubMedCrossRef
123.
go back to reference Ciravolo V, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227(2):658–67.PubMedCrossRef Ciravolo V, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227(2):658–67.PubMedCrossRef
124.
go back to reference McCubrey JA, et al. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul. 2015;57:75–101.PubMedCrossRef McCubrey JA, et al. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul. 2015;57:75–101.PubMedCrossRef
125.
go back to reference Zheng P, et al. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional apolipoprotein E. Cell Death Dis. 2018;9(4):434.PubMedPubMedCentralCrossRef Zheng P, et al. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional apolipoprotein E. Cell Death Dis. 2018;9(4):434.PubMedPubMedCentralCrossRef
127.
go back to reference Qin X, et al. Cisplatin-resistant lung cancer cell–derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100–5p-dependent manner. Int J Nanomedicine. 2017;12:3721.PubMedPubMedCentralCrossRef Qin X, et al. Cisplatin-resistant lung cancer cell–derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100–5p-dependent manner. Int J Nanomedicine. 2017;12:3721.PubMedPubMedCentralCrossRef
128.
go back to reference Bandari SK, et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 2018;65:104–18.PubMedCrossRef Bandari SK, et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 2018;65:104–18.PubMedCrossRef
129.
go back to reference Hu Y-B, et al. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene. 2018;10:1038/s41388–s41388. Hu Y-B, et al. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene. 2018;10:1038/s41388–s41388.
130.
go back to reference Ozawa PMM, et al. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat. 2018;172(3):713–23.PubMedPubMedCentralCrossRef Ozawa PMM, et al. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat. 2018;172(3):713–23.PubMedPubMedCentralCrossRef
131.
132.
go back to reference Battke C, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639–48.PubMedCrossRef Battke C, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639–48.PubMedCrossRef
133.
go back to reference Paggetti J, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–17. Paggetti J, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–17.
134.
go back to reference Martinez VG, et al. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology. 2017;6(12):e1362530.PubMedPubMedCentralCrossRef Martinez VG, et al. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology. 2017;6(12):e1362530.PubMedPubMedCentralCrossRef
135.
136.
go back to reference Nabet BY, et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 2017;170(2):352–66 e13.PubMedCrossRefPubMedCentral Nabet BY, et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 2017;170(2):352–66 e13.PubMedCrossRefPubMedCentral
137.
go back to reference Lin S, et al. Monitoring cancer stem cells: insights into clinical oncology. OncoTargets Ther. 2016;9:731. Lin S, et al. Monitoring cancer stem cells: insights into clinical oncology. OncoTargets Ther. 2016;9:731.
139.
go back to reference Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer. 2015;34(3):46.PubMedCentralCrossRef Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer. 2015;34(3):46.PubMedCentralCrossRef
140.
go back to reference Danen EH. Integrins: an overview of structural and functional aspects; 2013. Danen EH. Integrins: an overview of structural and functional aspects; 2013.
141.
142.
go back to reference Tian Y, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.PubMedCrossRef Tian Y, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.PubMedCrossRef
143.
go back to reference Yang T, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14.PubMedPubMedCentralCrossRef Yang T, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14.PubMedPubMedCentralCrossRef
144.
go back to reference Alvarez-Erviti L, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341.PubMedCrossRef Alvarez-Erviti L, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341.PubMedCrossRef
145.
go back to reference Li X, et al. Nano carriers for drug transport across the blood–brain barrier. J Drug Target. 2017;25(1):17–28.PubMedCrossRef Li X, et al. Nano carriers for drug transport across the blood–brain barrier. J Drug Target. 2017;25(1):17–28.PubMedCrossRef
146.
go back to reference Bach DH, et al. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer. 2017;141(2):220–30.PubMedCrossRef Bach DH, et al. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer. 2017;141(2):220–30.PubMedCrossRef
148.
go back to reference Zhang L, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. J Nature. 2015;527(7576):100.CrossRef Zhang L, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. J Nature. 2015;527(7576):100.CrossRef
149.
go back to reference Ohno S-I, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.PubMedCrossRef Ohno S-I, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.PubMedCrossRef
150.
go back to reference Kim MS, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14(1):195–204.PubMedCrossRef Kim MS, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14(1):195–204.PubMedCrossRef
151.
go back to reference Saari H, et al. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220:727–37.PubMedCrossRef Saari H, et al. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220:727–37.PubMedCrossRef
152.
go back to reference Jang SC, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710.PubMedCrossRef Jang SC, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710.PubMedCrossRef
153.
go back to reference Cho JA, et al. Exosomes: a new delivery system for tumor antigens in cancer immunotherapy. Int J Cancer. 2005;114(4):613–22.PubMedCrossRef Cho JA, et al. Exosomes: a new delivery system for tumor antigens in cancer immunotherapy. Int J Cancer. 2005;114(4):613–22.PubMedCrossRef
154.
go back to reference Rivoltini L, et al. TNF-related apoptosis-inducing ligand (TRAIL)–armed exosomes deliver proapoptotic signals to tumor site. Clin Cancer Res.2016;22:3499–512. Rivoltini L, et al. TNF-related apoptosis-inducing ligand (TRAIL)–armed exosomes deliver proapoptotic signals to tumor site. Clin Cancer Res.2016;22:3499–512.
155.
go back to reference Aspe JR, Wall NR. Survivin-T34A: molecular mechanism and therapeutic potential. OncoTargets Ther. 2010;3:247. Aspe JR, Wall NR. Survivin-T34A: molecular mechanism and therapeutic potential. OncoTargets Ther. 2010;3:247.
156.
go back to reference Lou G, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122.PubMedPubMedCentralCrossRef Lou G, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122.PubMedPubMedCentralCrossRef
158.
go back to reference Greco KA, et al. PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology. 2016;91:241 e1–241. e7.PubMedCrossRef Greco KA, et al. PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology. 2016;91:241 e1–241. e7.PubMedCrossRef
Metadata
Title
Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance
Authors
Ladan Mashouri
Hassan Yousefi
Amir Reza Aref
Ali mohammad Ahadi
Fatemeh Molaei
Suresh K. Alahari
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Metastasis
Published in
Molecular Cancer / Issue 1/2019
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-019-0991-5

Other articles of this Issue 1/2019

Molecular Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine