Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control

Authors: Marceline F. Finda, Fredros O. Okumu, Elihaika Minja, Rukiyah Njalambaha, Winfrida Mponzi, Brian B. Tarimo, Prosper Chaki, Javier Lezaun, Ann H. Kelly, Nicola Christofides

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken.

Methods

A mixed-methods design was used, involving: (i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and (ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings.

Results

Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development.

Conclusions

Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programmes. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programmes. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.
Literature
1.
go back to reference Institute of Medicine of the National Academies. A brief history of malaria. In: Arrow KJ, Panosian C, Gelband H, editors. Saving lives, buying time: economics of malaria drugs in an age of resistance. 1st ed. Washington: National Academies Press; 2004. Institute of Medicine of the National Academies. A brief history of malaria. In: Arrow KJ, Panosian C, Gelband H, editors. Saving lives, buying time: economics of malaria drugs in an age of resistance. 1st ed. Washington: National Academies Press; 2004.
2.
go back to reference WHO. World malaria report 2020. Geneva: World Health Organization; 2020. WHO. World malaria report 2020. Geneva: World Health Organization; 2020.
3.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2016;526:207–11.CrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2016;526:207–11.CrossRef
4.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.PubMedPubMedCentralCrossRef Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.PubMedPubMedCentralCrossRef
5.
go back to reference Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni P, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14:e0217414.PubMedPubMedCentralCrossRef Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni P, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14:e0217414.PubMedPubMedCentralCrossRef
6.
go back to reference Matowo NS, Munhenga G, Tanner M, Coetzee M, Feringa WF, Ngowo HS, et al. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res. 2017;2:96.PubMedPubMedCentralCrossRef Matowo NS, Munhenga G, Tanner M, Coetzee M, Feringa WF, Ngowo HS, et al. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res. 2017;2:96.PubMedPubMedCentralCrossRef
7.
go back to reference Mboma ZM, Overgaard HJ, Moore S, Bradley J, Moore J, Massue DJ, et al. Mosquito net coverage in years between mass distributions: a case study of Tanzania, 2013. Malar J. 2018;17:100.PubMedPubMedCentralCrossRef Mboma ZM, Overgaard HJ, Moore S, Bradley J, Moore J, Massue DJ, et al. Mosquito net coverage in years between mass distributions: a case study of Tanzania, 2013. Malar J. 2018;17:100.PubMedPubMedCentralCrossRef
8.
go back to reference Hemingway J, Shretta R, Wells TNC, Bell D, Djimd?? AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.PubMedPubMedCentralCrossRef Hemingway J, Shretta R, Wells TNC, Bell D, Djimd?? AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.PubMedPubMedCentralCrossRef
9.
go back to reference WHO. World malaria report 2018. Geneva: World Health Organization; 2018. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
11.
go back to reference WHO. A framework for malaria elimination. Geneva: World Health Organization; 2017. WHO. A framework for malaria elimination. Geneva: World Health Organization; 2017.
12.
go back to reference WHO. Progress and prospects for the use of genetically modified mosquitoes to inhibit disease transmission. Geneva: World Health Organization; 2009. WHO. Progress and prospects for the use of genetically modified mosquitoes to inhibit disease transmission. Geneva: World Health Organization; 2009.
13.
go back to reference WHO. Guidance framework for testing of genetically modified mosquitoes. Geneva: World Health Organization; 2014. WHO. Guidance framework for testing of genetically modified mosquitoes. Geneva: World Health Organization; 2014.
14.
go back to reference Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010;10:295–311.PubMedPubMedCentralCrossRef Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010;10:295–311.PubMedPubMedCentralCrossRef
15.
go back to reference African Union Development Agency. Gene drives for malaria control and elimination in Africa. 2018. . African Union Development Agency. Gene drives for malaria control and elimination in Africa. 2018. .
16.
go back to reference Macias VM, Ohm JR, Rasgon JL. Gene drive for mosquito control: where did it come from and where are we headed? Int J Environ Res Public Health. 2017;14:1006.PubMedCentralCrossRef Macias VM, Ohm JR, Rasgon JL. Gene drive for mosquito control: where did it come from and where are we headed? Int J Environ Res Public Health. 2017;14:1006.PubMedCentralCrossRef
17.
go back to reference Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007;5:11.PubMedPubMedCentralCrossRef Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007;5:11.PubMedPubMedCentralCrossRef
18.
go back to reference Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.PubMedCrossRef Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.PubMedCrossRef
20.
go back to reference Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2002;270:921–8.CrossRef Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2002;270:921–8.CrossRef
21.
go back to reference Committee on gene drive research in non-human organisms. Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. 1st ed. Johnson AF, editor. Washington: National Academies Press; 2016. 218 p. Committee on gene drive research in non-human organisms. Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. 1st ed. Johnson AF, editor. Washington: National Academies Press; 2016. 218 p.
22.
go back to reference Moreira L, Iturbe-Ormaetxe I, Jeffery JAL, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.PubMedCrossRef Moreira L, Iturbe-Ormaetxe I, Jeffery JAL, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.PubMedCrossRef
23.
go back to reference Mcmeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang Y-F, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323:141–5.PubMedCrossRef Mcmeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang Y-F, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323:141–5.PubMedCrossRef
24.
go back to reference Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833.PubMedPubMedCentralCrossRef Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010;6:e1000833.PubMedPubMedCentralCrossRef
25.
go back to reference Lezaun J, Porter N. Containment and competition: transgenic animals in the One Health agenda. Soc Sci Med. 2015;129:96–105.PubMedCrossRef Lezaun J, Porter N. Containment and competition: transgenic animals in the One Health agenda. Soc Sci Med. 2015;129:96–105.PubMedCrossRef
26.
go back to reference Bartumeus F, Costa GB, Eritja R, Kelly AH, Finda M, Lezaun J, et al. Sustainable innovation in vector control requires strong partnerships with communities. PLoS Negl Trop Dis. 2019;13:e0007204.PubMedPubMedCentralCrossRef Bartumeus F, Costa GB, Eritja R, Kelly AH, Finda M, Lezaun J, et al. Sustainable innovation in vector control requires strong partnerships with communities. PLoS Negl Trop Dis. 2019;13:e0007204.PubMedPubMedCentralCrossRef
27.
go back to reference Resnik DB. Ethics of community engagement in field trials of genetically modified mosquitoes. Dev World Bioethics. 2018;18:135–43.CrossRef Resnik DB. Ethics of community engagement in field trials of genetically modified mosquitoes. Dev World Bioethics. 2018;18:135–43.CrossRef
28.
go back to reference Beisel U, Boëte C. The flying public health tool: genetically modified mosquitoes and malaria control. Sci Cult (Lond). 2013;22(1):38–60.CrossRef Beisel U, Boëte C. The flying public health tool: genetically modified mosquitoes and malaria control. Sci Cult (Lond). 2013;22(1):38–60.CrossRef
29.
go back to reference Reeves RG, Denton JA, Santucci F, Bryk J, Reed FA. Scientific standards and the regulation of genetically modified insects. PLoS Negl Trop Dis. 2012;6:e1502.PubMedPubMedCentralCrossRef Reeves RG, Denton JA, Santucci F, Bryk J, Reed FA. Scientific standards and the regulation of genetically modified insects. PLoS Negl Trop Dis. 2012;6:e1502.PubMedPubMedCentralCrossRef
30.
go back to reference Saraswathy S, Han Lim L, Ahmad N, Murad S. Genetically modified mosquito: the Malaysian public engagement experience Biosafety review process. Biotechnol J. 2012;7:1321–7. Saraswathy S, Han Lim L, Ahmad N, Murad S. Genetically modified mosquito: the Malaysian public engagement experience Biosafety review process. Biotechnol J. 2012;7:1321–7.
31.
go back to reference Marshall JM, Touré MB, Traore MM, Famenini S, Taylor CE. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control. Malar J. 2010;9:128.PubMedPubMedCentralCrossRef Marshall JM, Touré MB, Traore MM, Famenini S, Taylor CE. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control. Malar J. 2010;9:128.PubMedPubMedCentralCrossRef
32.
go back to reference Okorie PN, Marshall JM, Akpa OM, Ademowo OG. Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria. Malar J. 2014;13:154.PubMedPubMedCentralCrossRef Okorie PN, Marshall JM, Akpa OM, Ademowo OG. Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria. Malar J. 2014;13:154.PubMedPubMedCentralCrossRef
33.
go back to reference Finda MF, Christofides N, Lezaun J, Tarimo B, Chaki P, Kelly AH, et al. Opinions of key stakeholders on alternative interventions for malaria control and elimination in Tanzania. Malar J. 2020;19:164.PubMedPubMedCentralCrossRef Finda MF, Christofides N, Lezaun J, Tarimo B, Chaki P, Kelly AH, et al. Opinions of key stakeholders on alternative interventions for malaria control and elimination in Tanzania. Malar J. 2020;19:164.PubMedPubMedCentralCrossRef
34.
go back to reference McNaughton D. The importance of long-term social research in enabling participation and developing engagement strategies for new dengue control technologies. PLoS Negl Trop Dis. 2012;6:e1785.PubMedPubMedCentralCrossRef McNaughton D. The importance of long-term social research in enabling participation and developing engagement strategies for new dengue control technologies. PLoS Negl Trop Dis. 2012;6:e1785.PubMedPubMedCentralCrossRef
35.
go back to reference Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south – eastern Tanzania since early 2000s. Malar J. 2018;17:362.PubMedPubMedCentralCrossRef Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south – eastern Tanzania since early 2000s. Malar J. 2018;17:362.PubMedPubMedCentralCrossRef
36.
go back to reference Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS ONE. 2017;12:e0177807.PubMedPubMedCentralCrossRef Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS ONE. 2017;12:e0177807.PubMedPubMedCentralCrossRef
37.
go back to reference Mmbando AS, Ngowo H, Limwagu A, Kilalangongono M, Kifungo K, Okumu FO. Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes. Malar J. 2018;17:368.PubMedPubMedCentralCrossRef Mmbando AS, Ngowo H, Limwagu A, Kilalangongono M, Kifungo K, Okumu FO. Eave ribbons treated with the spatial repellent, transfluthrin, can effectively protect against indoor-biting and outdoor-biting malaria mosquitoes. Malar J. 2018;17:368.PubMedPubMedCentralCrossRef
38.
go back to reference Finda MF, Kaindoa EW, Nyoni AP, Okumu FO. ‘The mosquitoes are preparing to attack us’: knowledge and perceptions of communities in south-eastern Tanzania regarding mosquito swarms. Malar J. 2019;18:56.PubMedPubMedCentralCrossRef Finda MF, Kaindoa EW, Nyoni AP, Okumu FO. ‘The mosquitoes are preparing to attack us’: knowledge and perceptions of communities in south-eastern Tanzania regarding mosquito swarms. Malar J. 2019;18:56.PubMedPubMedCentralCrossRef
39.
go back to reference Moshi IR, Ngowo H, Dillip A, Msellemu D, Madumla EP, Okumu FO, et al. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania. Malar J. 2017;16:274.PubMedPubMedCentralCrossRef Moshi IR, Ngowo H, Dillip A, Msellemu D, Madumla EP, Okumu FO, et al. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania. Malar J. 2017;16:274.PubMedPubMedCentralCrossRef
40.
go back to reference Fetters MD, Curry LA, Creswell JW. Achieving Integration in mixed methods designs—principles and practices. Health Serv Res. 2013;10:2134–56.CrossRef Fetters MD, Curry LA, Creswell JW. Achieving Integration in mixed methods designs—principles and practices. Health Serv Res. 2013;10:2134–56.CrossRef
41.
go back to reference Geubbels E, Amri S, Levira F, Schellenberg J, Masanja H, Nathan R. Health & demographic surveillance system profile: the ifakara rural and urban health and demographic surveillance system (Ifakara HDSS). Int J Epidemiol. 2015;44:848–61.PubMedCrossRef Geubbels E, Amri S, Levira F, Schellenberg J, Masanja H, Nathan R. Health & demographic surveillance system profile: the ifakara rural and urban health and demographic surveillance system (Ifakara HDSS). Int J Epidemiol. 2015;44:848–61.PubMedCrossRef
42.
44.
go back to reference R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.
45.
go back to reference Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J. 2016;15:287.PubMedPubMedCentralCrossRef Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J. 2016;15:287.PubMedPubMedCentralCrossRef
46.
go back to reference Finda MF, Kaindoa EW, Nyoni AP, Okumu FO. Knowledge and perceptions of communities in south-eastern Tanzania regarding mosquito swarms. Malar J. 2019;18:56.PubMedPubMedCentralCrossRef Finda MF, Kaindoa EW, Nyoni AP, Okumu FO. Knowledge and perceptions of communities in south-eastern Tanzania regarding mosquito swarms. Malar J. 2019;18:56.PubMedPubMedCentralCrossRef
47.
go back to reference Tanzania Ministry of Health, Ministry of Health Zanzibar, NBS. Tanzania malaria indicator survey (TMIS): key indicators 2017. Tanzania Ministry of Health: Dodoma; 2018. Tanzania Ministry of Health, Ministry of Health Zanzibar, NBS. Tanzania malaria indicator survey (TMIS): key indicators 2017. Tanzania Ministry of Health: Dodoma; 2018.
48.
go back to reference Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020;38:1054–60.PubMedPubMedCentralCrossRef Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020;38:1054–60.PubMedPubMedCentralCrossRef
49.
go back to reference Knols BGJ, Bossin HC, Mukabana WR, Robinson AS. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO World. Am J Trop Med Hyg. 2007;77:232–42.PubMedCrossRef Knols BGJ, Bossin HC, Mukabana WR, Robinson AS. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO World. Am J Trop Med Hyg. 2007;77:232–42.PubMedCrossRef
51.
go back to reference Thizy D, Emerson C, Gibbs J, Hartley S, Kapiriri L, Lavery J, et al. Guidance on stakeholder engagement practices to inform the development of area- wide vector control methods. PLoS Negl Trop Dis. 2019;13:e0007286.PubMedPubMedCentralCrossRef Thizy D, Emerson C, Gibbs J, Hartley S, Kapiriri L, Lavery J, et al. Guidance on stakeholder engagement practices to inform the development of area- wide vector control methods. PLoS Negl Trop Dis. 2019;13:e0007286.PubMedPubMedCentralCrossRef
52.
go back to reference McNaughton D, Duong T. Designing a community engagement framework for a new dengue control method: a case study from central Vietnam. PLoS Negl Trop Dis. 2014;8:e2794.PubMedPubMedCentralCrossRef McNaughton D, Duong T. Designing a community engagement framework for a new dengue control method: a case study from central Vietnam. PLoS Negl Trop Dis. 2014;8:e2794.PubMedPubMedCentralCrossRef
53.
go back to reference De-Campos A, Hartley S, de Koning C, Lezaun J, Velho L. Responsible Innovation and political accountability: genetically modified mosquitoes in Brazil. J Responsible Innov. 2017;4:5–23.CrossRef De-Campos A, Hartley S, de Koning C, Lezaun J, Velho L. Responsible Innovation and political accountability: genetically modified mosquitoes in Brazil. J Responsible Innov. 2017;4:5–23.CrossRef
54.
go back to reference Marshall JM, Touré MB, Traore MM, Famenini S, Taylor CE. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control. Malar J. 2010;9:128.PubMedPubMedCentralCrossRef Marshall JM, Touré MB, Traore MM, Famenini S, Taylor CE. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control. Malar J. 2010;9:128.PubMedPubMedCentralCrossRef
56.
go back to reference Jones MS, Delborne JA, Elsensohn J, Mitchell PD, Brown ZS. Does the U.S. public support using gene drives in agriculture? And what do they want to know? Sci Adv. 2019;5:eaau8462.PubMedPubMedCentralCrossRef Jones MS, Delborne JA, Elsensohn J, Mitchell PD, Brown ZS. Does the U.S. public support using gene drives in agriculture? And what do they want to know? Sci Adv. 2019;5:eaau8462.PubMedPubMedCentralCrossRef
57.
go back to reference Olynk Widmar NJ, Dominick SR, Tyner WE, Ruple A. When is genetic modification socially acceptable? When used to advance human health through avenues other than food. PLoS ONE. 2017;12:1–20.CrossRef Olynk Widmar NJ, Dominick SR, Tyner WE, Ruple A. When is genetic modification socially acceptable? When used to advance human health through avenues other than food. PLoS ONE. 2017;12:1–20.CrossRef
58.
go back to reference Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J. 2016;15:287.PubMedPubMedCentralCrossRef Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J. 2016;15:287.PubMedPubMedCentralCrossRef
59.
go back to reference Brossard D, Belluck P, Gould F, Wirz CD. Promises and perils of gene drives: navigating the communication of complex, post-normal science. Proc Natl Acad Sci USA. 2019;116:7692–7.PubMedPubMedCentralCrossRef Brossard D, Belluck P, Gould F, Wirz CD. Promises and perils of gene drives: navigating the communication of complex, post-normal science. Proc Natl Acad Sci USA. 2019;116:7692–7.PubMedPubMedCentralCrossRef
60.
go back to reference Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s. Malar J. 2018;17:362.PubMedPubMedCentralCrossRef Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s. Malar J. 2018;17:362.PubMedPubMedCentralCrossRef
Metadata
Title
Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control
Authors
Marceline F. Finda
Fredros O. Okumu
Elihaika Minja
Rukiyah Njalambaha
Winfrida Mponzi
Brian B. Tarimo
Prosper Chaki
Javier Lezaun
Ann H. Kelly
Nicola Christofides
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03663-9

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine