Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

A phase 1 evaluation of the pharmacokinetic/pharmacodynamic interaction of the anti-malarial agents KAF156 and piperaquine

Authors: F. Joel Leong, Jay Prakash Jain, Yiyan Feng, Budhaditya Goswami, Daniel S. Stein

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

KAF156 is a novel imidazolopiperazine anti-malarial with activity against pre-erythrocytic liver stages, asexual and sexual blood stages. Based on in vitro data, a two-way pharmacokinetic interaction was hypothesized for KAF156 use in combination with piperaquine (PPQ) as both drugs are CYP3A4 substrates and inhibitors. Potential combination effects on the QT interval were also assessed.

Methods

This was an open-label, parallel-group, single-dose study in healthy volunteers randomized to three parallel arms (1:1:1) of 800 mg KAF156 + 1280 mg PPQ, 800 mg KAF156 alone and 1280 mg PPQ alone. Triplicate ECGs were done up to 48 h post-dose. Routine safety and pharmacokinetic assessments were carried out up to 61 days.

Results

Of the 72 healthy male subjects recruited, 68 completed the study. Co-administration of PPQ and KAF156 had no overall effect on AUC of either compound, but the Cmax values of both KAF156 (~ 23%) and piperaquine (~ 70%) increased. Both drugs given alone or in combination were well tolerated with no deaths or serious adverse events (SAEs). AEs were observed at the frequency of 87.5, 79.2 and 58.3% respectively for KAF156 + PPQ, PPQ and KAF156 arms. The most common AEs were nausea and headache. There were no Grade 3 or 4 events. There were no ECG related AEs, no QTcF interval > 480 ms and no QTcF interval increase from baseline > 60 ms. There was a positive ∆QTcF trend in the KAF156 + PPQ arm when either KAF156 or piperaquine concentration increases, but there was no significant difference between the combination arm and other arms in maximum ∆QTcF.

Conclusions

No safety/cardiac risk or drug interaction was identified which would preclude use of a KAF156 and PPQ combination in future studies.
Literature
2.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Menard D, Ariey F. Towards real-time monitoring of artemisinin resistance. Lancet Infect Dis. 2015;15:367–8.CrossRefPubMed Menard D, Ariey F. Towards real-time monitoring of artemisinin resistance. Lancet Infect Dis. 2015;15:367–8.CrossRefPubMed
5.
go back to reference Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.CrossRefPubMedPubMedCentral Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.CrossRefPubMedPubMedCentral
6.
go back to reference Noedl H. The need for new antimalarial drugs less prone to resistance. Curr Pharm Des. 2013;19:266–9.CrossRefPubMed Noedl H. The need for new antimalarial drugs less prone to resistance. Curr Pharm Des. 2013;19:266–9.CrossRefPubMed
7.
go back to reference Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21.CrossRefPubMedPubMedCentral Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21.CrossRefPubMedPubMedCentral
9.
go back to reference Nagle A, Wu T, Kuhen K, Gagaring K, Borboa R, Francek C, et al. Imidazolopiperazines: lead optimization of the second-generation antimalarial agents. J Med Chem. 2012;55:4244–73.CrossRefPubMedPubMedCentral Nagle A, Wu T, Kuhen K, Gagaring K, Borboa R, Francek C, et al. Imidazolopiperazines: lead optimization of the second-generation antimalarial agents. J Med Chem. 2012;55:4244–73.CrossRefPubMedPubMedCentral
10.
go back to reference Wu T, Nagle A, Kuhen K, Gagaring K, Borboa R, Francek C, et al. Imidazolopiperazines: hit to lead optimization of new antimalarial agents. J Med Chem. 2011;54:5116–30.CrossRefPubMed Wu T, Nagle A, Kuhen K, Gagaring K, Borboa R, Francek C, et al. Imidazolopiperazines: hit to lead optimization of new antimalarial agents. J Med Chem. 2011;54:5116–30.CrossRefPubMed
11.
go back to reference Kuhen KL, Chatterjee AK, Rottmann M, Gagaring K, Borboa R, Buenviaje J, et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother. 2014;58:5060–7.CrossRefPubMedPubMedCentral Kuhen KL, Chatterjee AK, Rottmann M, Gagaring K, Borboa R, Buenviaje J, et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother. 2014;58:5060–7.CrossRefPubMedPubMedCentral
12.
go back to reference Leong FJ, Zhao R, Zeng S, Magnusson B, Diagana TT, Pertel P. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel Imidazolopiperazine KAF156 to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother. 2014;58:6437–43.CrossRefPubMedPubMedCentral Leong FJ, Zhao R, Zeng S, Magnusson B, Diagana TT, Pertel P. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel Imidazolopiperazine KAF156 to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother. 2014;58:6437–43.CrossRefPubMedPubMedCentral
13.
go back to reference White NJ, Duong TT, Uthaisin C, Nosten F, Phyo AP, Hanboonkunupakarn B, et al. Antimalarial activity of KAF156 in falciparum and vivax malaria. N Engl J Med. 2016;375:1152–60.CrossRefPubMedPubMedCentral White NJ, Duong TT, Uthaisin C, Nosten F, Phyo AP, Hanboonkunupakarn B, et al. Antimalarial activity of KAF156 in falciparum and vivax malaria. N Engl J Med. 2016;375:1152–60.CrossRefPubMedPubMedCentral
14.
go back to reference Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, et al. Efficacy of artemether–lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge provinces, angola. Antimicrob Agents Chemother. 2015;59:437–43.CrossRefPubMed Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, et al. Efficacy of artemether–lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge provinces, angola. Antimicrob Agents Chemother. 2015;59:437–43.CrossRefPubMed
15.
go back to reference Myint HY, Ashley EA, Day NPJ, Nosten F, White NJ. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg. 2007;101:858–66.CrossRefPubMed Myint HY, Ashley EA, Day NPJ, Nosten F, White NJ. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg. 2007;101:858–66.CrossRefPubMed
16.
go back to reference Keating GM. Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs. 2012;72:937–61.CrossRefPubMed Keating GM. Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs. 2012;72:937–61.CrossRefPubMed
17.
go back to reference Reuter SE, Evans AM, Shakib S, Lungershausen Y, Francis B, Valentini G, et al. Effect of food on the pharmacokinetics of piperaquine and dihydroartemisinin. Clin Drug Investig. 2015;35:559–67.CrossRefPubMed Reuter SE, Evans AM, Shakib S, Lungershausen Y, Francis B, Valentini G, et al. Effect of food on the pharmacokinetics of piperaquine and dihydroartemisinin. Clin Drug Investig. 2015;35:559–67.CrossRefPubMed
19.
go back to reference Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, et al. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim® (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J. 2015;14:160.CrossRefPubMedPubMedCentral Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, et al. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim® (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J. 2015;14:160.CrossRefPubMedPubMedCentral
21.
go back to reference Stein DS, Jain JP, Kangas M, Lefèvre G, Machineni S, Griffin P, et al. Open-label, single-dose, parallel-group study in healthy volunteers to determine the drug-drug interaction potential between KAE609 (cipargamin) and piperaquine. Antimicrob Agents Chemother. 2015;59:3493–500.CrossRefPubMedPubMedCentral Stein DS, Jain JP, Kangas M, Lefèvre G, Machineni S, Griffin P, et al. Open-label, single-dose, parallel-group study in healthy volunteers to determine the drug-drug interaction potential between KAE609 (cipargamin) and piperaquine. Antimicrob Agents Chemother. 2015;59:3493–500.CrossRefPubMedPubMedCentral
Metadata
Title
A phase 1 evaluation of the pharmacokinetic/pharmacodynamic interaction of the anti-malarial agents KAF156 and piperaquine
Authors
F. Joel Leong
Jay Prakash Jain
Yiyan Feng
Budhaditya Goswami
Daniel S. Stein
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2162-8

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine