Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Molecular identification of sulfadoxine-pyrimethamine resistance in malaria infected women who received intermittent preventive treatment in the Democratic Republic of Congo

Authors: Emrah Ruh, Jean Paul Bateko, Turgut Imir, Aysegul Taylan-Ozkan

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Point mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes which confer resistance to sulfadoxine-pyrimethamine (SP) occur at increasing rates. The present study aimed to identify Pfdhfr and Pfdhps mutations in P. falciparum isolates recovered from women who received two doses of SP during pregnancy in Bandundu, the Democratic Republic of Congo (DRC).

Methods

A total of 48 women with confirmed P. falciparum infection were enrolled in the study. Finger-prick blood samples that were collected on filter paper at the time of delivery were used for DNA isolation. Pfdhfr and Pfdhps genes were amplified by a nested PCR protocol. DNA sequencing was performed on both strands, and the point mutations were analysed.

Results

All of the 48 (100.0%) P. falciparum isolates carried at least one polymorphism in both genes. The wild-type haplotypes of Pfdhfr (CNCSI [C50, N51, C59, S108, I164]) and Pfdhps (SAKAA [S436, A437, K540, A581, A613]) were not observed in the study. In Pfdhfr, N51I (85.4%), C59R (60.4%), and S108N (100.0%) polymorphisms were detected. Triple mutation (CIRNI) (mutant amino acids are underlined) was the most prevalent (47.9%) Pfdhfr haplotype. In the study, all P. falciparum isolates (100.0%) harboured the A437G allele in Pfdhps gene. Also, K540E and A581G polymorphisms were observed in one (2.1%) isolate. Single mutant haplotype (SGKAA) was detected in 97.9% of the isolates. Mutant Pfdhfr and Pfdhps allele combinations revealed quintuple (CICNI-SGEGA; 2.1%), quadruple (CIRNI-SGKAA; 47.9%), triple (CICNI-SGKAA; 35.4%, CNRNI-SGKAA; 12.5%), and double (CNCNI-SGKAA; 2.1%) haplotypes.

Conclusions

In the study, the rate of SGEGA haplotype was low (2.1%). Although K540E and A581G alleles are more common in Eastern Africa, a distinct lineage of SGEGA is also present in the DRC, which is located in Central Africa. This haplotype is associated with decreased efficacy of SP in pregnant women and infants, therefore, it should be carefully considered in the DRC and SP resistance should be routinely monitored.
Literature
1.
go back to reference ACTwatch Group, Mpanya G, Tshefu A, Likwela JL. The malaria testing and treatment market in Kinshasa, Democratic Republic of the Congo, 2013. Malar J. 2017;16:94.CrossRef ACTwatch Group, Mpanya G, Tshefu A, Likwela JL. The malaria testing and treatment market in Kinshasa, Democratic Republic of the Congo, 2013. Malar J. 2017;16:94.CrossRef
2.
go back to reference Likwela JL, D’Alessandro U, Lokwa BL, Meuris S, Dramaix MW. Sulfadoxine-pyrimethamine resistance and intermittent preventive treatment during pregnancy: a retrospective analysis of birth weight data in the Democratic Republic of Congo (DRC). Trop Med Int Health. 2012;17:322–9.PubMed Likwela JL, D’Alessandro U, Lokwa BL, Meuris S, Dramaix MW. Sulfadoxine-pyrimethamine resistance and intermittent preventive treatment during pregnancy: a retrospective analysis of birth weight data in the Democratic Republic of Congo (DRC). Trop Med Int Health. 2012;17:322–9.PubMed
3.
go back to reference WHO. Policy brief for the implementation of intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP). Geneva: World Health Organization; 2013 (revised January 2014). WHO. Policy brief for the implementation of intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP). Geneva: World Health Organization; 2013 (revised January 2014).
4.
go back to reference President’s malaria initiative. Democratic Republic of the Congo. Malaria Operational Plan FY; 2017. President’s malaria initiative. Democratic Republic of the Congo. Malaria Operational Plan FY; 2017.
5.
go back to reference Baraka V, Delgado-Ratto C, Nag S, Ishengoma DS, Madebe RA, Mavoko HM, et al. Different origin and dispersal of sulfadoxine-resistant Plasmodium falciparum haplotypes between Eastern Africa and Democratic Republic of Congo. Int J Antimicrob Agents. 2017;49:456–64.CrossRefPubMed Baraka V, Delgado-Ratto C, Nag S, Ishengoma DS, Madebe RA, Mavoko HM, et al. Different origin and dispersal of sulfadoxine-resistant Plasmodium falciparum haplotypes between Eastern Africa and Democratic Republic of Congo. Int J Antimicrob Agents. 2017;49:456–64.CrossRefPubMed
6.
go back to reference Sutherland CJ, Fifer H, Pearce RJ, bin Reza F, Nicholas M, Haustein T, et al. Novel pfdhps haplotypes among imported cases of Plasmodium falciparum malaria in the United Kingdom. Antimicrob Agents Chemother. 2009;53:3405–10.CrossRefPubMedPubMedCentral Sutherland CJ, Fifer H, Pearce RJ, bin Reza F, Nicholas M, Haustein T, et al. Novel pfdhps haplotypes among imported cases of Plasmodium falciparum malaria in the United Kingdom. Antimicrob Agents Chemother. 2009;53:3405–10.CrossRefPubMedPubMedCentral
7.
go back to reference Sharma D, Lather M, Mallick PK, Adak T, Dang AS, Valecha N, et al. Polymorphism in drug resistance genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium falciparum in some states of India. Parasit Vectors. 2015;8:471.CrossRefPubMedPubMedCentral Sharma D, Lather M, Mallick PK, Adak T, Dang AS, Valecha N, et al. Polymorphism in drug resistance genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium falciparum in some states of India. Parasit Vectors. 2015;8:471.CrossRefPubMedPubMedCentral
8.
go back to reference Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci. 2015;1342:10–8.CrossRefPubMedPubMedCentral Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci. 2015;1342:10–8.CrossRefPubMedPubMedCentral
9.
go back to reference Minja DT, Schmiegelow C, Mmbando B, Boström S, Oesterholt M, Magistrado P, et al. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania. Emerg Infect Dis. 2013;19(9):1446–54.CrossRefPubMedCentral Minja DT, Schmiegelow C, Mmbando B, Boström S, Oesterholt M, Magistrado P, et al. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania. Emerg Infect Dis. 2013;19(9):1446–54.CrossRefPubMedCentral
10.
go back to reference Swarthout TD, van den Broek IV, Kayembe G, Montgomery J, Pota H, Roper C. Artesunate + amodiaquine and artesunate + sulphadoxine-pyrimethamine for treatment of uncomplicated malaria in Democratic Republic of Congo: a clinical trial with determination of sulphadoxine and pyrimethamine-resistant haplotypes. Trop Med Int Health. 2006;11:1503–11.CrossRefPubMed Swarthout TD, van den Broek IV, Kayembe G, Montgomery J, Pota H, Roper C. Artesunate + amodiaquine and artesunate + sulphadoxine-pyrimethamine for treatment of uncomplicated malaria in Democratic Republic of Congo: a clinical trial with determination of sulphadoxine and pyrimethamine-resistant haplotypes. Trop Med Int Health. 2006;11:1503–11.CrossRefPubMed
11.
go back to reference Cohuet S, Bonnet M, Van Herp M, Van Overmeir C, D’Alessandro U, Guthmann JP. Short report: molecular markers associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in the Democratic Republic of Congo. Am J Trop Med Hyg. 2006;75:152–4.PubMed Cohuet S, Bonnet M, Van Herp M, Van Overmeir C, D’Alessandro U, Guthmann JP. Short report: molecular markers associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in the Democratic Republic of Congo. Am J Trop Med Hyg. 2006;75:152–4.PubMed
12.
go back to reference Alker AP, Kazadi WM, Kutelemeni AK, Bloland PB, Tshefu AK, Meshnick SR. dhfr and dhps genotype and sulfadoxine-pyrimethamine treatment failure in children with falciparum malaria in the Democratic Republic of Congo. Trop Med Int Health. 2008;13:1384–91.CrossRefPubMedPubMedCentral Alker AP, Kazadi WM, Kutelemeni AK, Bloland PB, Tshefu AK, Meshnick SR. dhfr and dhps genotype and sulfadoxine-pyrimethamine treatment failure in children with falciparum malaria in the Democratic Republic of Congo. Trop Med Int Health. 2008;13:1384–91.CrossRefPubMedPubMedCentral
13.
go back to reference Mobula L, Lilley B, Tshefu AK, Rosenthal PJ. Resistance-mediating polymorphisms in Plasmodium falciparum infections in Kinshasa, Democratic Republic of the Congo. Am J Trop Med Hyg. 2009;80:555–8.PubMed Mobula L, Lilley B, Tshefu AK, Rosenthal PJ. Resistance-mediating polymorphisms in Plasmodium falciparum infections in Kinshasa, Democratic Republic of the Congo. Am J Trop Med Hyg. 2009;80:555–8.PubMed
14.
go back to reference Matangila JR, Lufuluabo J, Ibalanky AL, da Luz RAI, Van Lutumba JP, Geertruyden JP. Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo. Malar J. 2014;13:132.CrossRefPubMedPubMedCentral Matangila JR, Lufuluabo J, Ibalanky AL, da Luz RAI, Van Lutumba JP, Geertruyden JP. Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo. Malar J. 2014;13:132.CrossRefPubMedPubMedCentral
15.
go back to reference Naidoo I, Roper C. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria. Trends Parasitol. 2013;29:505–15.CrossRefPubMed Naidoo I, Roper C. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria. Trends Parasitol. 2013;29:505–15.CrossRefPubMed
16.
go back to reference Taylor SM, Antonia AL, Parobek CM, Juliano JJ, Janko M, Emch M, et al. Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo. Sci Rep. 2013;3:1165.CrossRefPubMedPubMedCentral Taylor SM, Antonia AL, Parobek CM, Juliano JJ, Janko M, Emch M, et al. Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo. Sci Rep. 2013;3:1165.CrossRefPubMedPubMedCentral
17.
go back to reference Taylor SM, Antonia AL, Harrington WE, Goheen MM, Mwapasa V, Chaluluka E, et al. Independent lineages of highly sulfadoxine-resistant Plasmodium falciparum haplotypes, eastern Africa. Emerg Infect Dis. 2014;20:1140–8.CrossRefPubMedPubMedCentral Taylor SM, Antonia AL, Harrington WE, Goheen MM, Mwapasa V, Chaluluka E, et al. Independent lineages of highly sulfadoxine-resistant Plasmodium falciparum haplotypes, eastern Africa. Emerg Infect Dis. 2014;20:1140–8.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular identification of sulfadoxine-pyrimethamine resistance in malaria infected women who received intermittent preventive treatment in the Democratic Republic of Congo
Authors
Emrah Ruh
Jean Paul Bateko
Turgut Imir
Aysegul Taylan-Ozkan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2160-x

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine